Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 83-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an initial boundary value problem for a singularly perturbed parabolic system of two reaction–diffusion-type equations with Neumann conditions, where the diffusion coefficients are of different degrees of smallness and the right-hand sides need not be quasimonotonic. We obtain an asymptotic approximation of the stationary solution with a boundary layer and prove existence theorems, the asymptotic stability in the sense of Lyapunov, and the local uniqueness of such a solution. The obtained result is applied to a class of problems of chemical kinetics.
Keywords: reaction–diffusion systems, stationary solution, quasimonotonicity conditions, method of differential inequalities, upper and lower solutions, boundary layer, stability in the sense of Lyapunov.
@article{TMF_2022_212_1_a5,
     author = {N. N. Nefedov and N. N. Deryugina},
     title = {Existence and stability of a~stable stationary solution with a~boundary layer for a~system of reaction{\textendash}diffusion equations with {Neumann} boundary conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {83--94},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/}
}
TY  - JOUR
AU  - N. N. Nefedov
AU  - N. N. Deryugina
TI  - Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 83
EP  - 94
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/
LA  - ru
ID  - TMF_2022_212_1_a5
ER  - 
%0 Journal Article
%A N. N. Nefedov
%A N. N. Deryugina
%T Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 83-94
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/
%G ru
%F TMF_2022_212_1_a5
N. N. Nefedov; N. N. Deryugina. Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/

[1] A. A. Melnikova, N. N. Deryugina, “Suschestvovanie periodicheskogo resheniya v vide dvumernogo fronta v sisteme parabolicheskikh uravnenii”, Differ. uravneniya, 56:4 (2020), 475–489 | DOI | DOI

[2] A. A. Melnikova, N. N. Deryugina, “Dinamika avtovolnovogo fronta v modeli razvitiya urboekosistem”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2018, no. 3, 48–55 | DOI

[3] A. A. Melnikova, N. N. Deryugina, “Periodicheskie izmeneniya avtovolnovogo fronta v dvumernoi sisteme parabolicheskikh uravnenii”, Model. i analiz inform. sistem, 25:1 (2018), 112–124 | DOI

[4] N. Levashova, A. Sidorova, A. Semina, M. Ni, “A spatio-temporal autowave model of shanghai territory development”, Sustainability, 11:13 (2019), 3658, 13 pp. | DOI

[5] V. F. Butuzov, N. T. Levashova, A. A. Melnikova, “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 53:9 (2013), 1427–1447 | DOI | DOI

[6] N. T. Levashova, B. V. Tischenko, “Suschestvovanie i ustoichivost resheniya sistemy dvukh nelineinykh uravnenii diffuzii v srede s razryvnymi kharakteristikami”, Zh. vychisl. matem. i matem. fiz., 61:11 (2021), 1850–1872 | DOI | DOI

[7] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsiya-diffuziya-advetsiya: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI

[8] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Springer, New York, 1993 | DOI | MR

[9] A. A. Melnikova, “Suschestvovanie i ustoichivost periodicheskogo resheniya tipa fronta v dvukhkomponentnoi sisteme parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 59:7 (2019), 1184–1200 | DOI | DOI

[10] N. T. Levashova, A. A. Melnikova, S. V. Bytsyura, “Primenenie metoda differentsialnykh neravenstv dlya obosnovaniya resheniya sistemy parabolicheskikh uravnenii v vide dvizhuschegosya fronta”, Model. i analiz inform. sistem, 23:3 (2016), 317–325 | DOI | MR

[11] N. N. Nefedov, K. R. Schneider, A. Schuppert, “Jumping behavior of the reaction rate of fast bimolecular reactions”, Z. Angew. Math. Mech., 76:2 (1996), 69–72

[12] V. F. Butuzov, H. H. Nefedov, K. P. Shnaider, “Singulyarno vozmuschennye zadachi v sluchae smeny ustoichivosti”, Itogi nauki i tekhn. Ser. “Sovrem. matem. i ee prilozh.” Tematicheskie obzory, 109 (2002), 5–242 | DOI | MR