@article{TMF_2022_212_1_a5,
author = {N. N. Nefedov and N. N. Deryugina},
title = {Existence and stability of a~stable stationary solution with a~boundary layer for a~system of reaction{\textendash}diffusion equations with {Neumann} boundary conditions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {83--94},
year = {2022},
volume = {212},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/}
}
TY - JOUR AU - N. N. Nefedov AU - N. N. Deryugina TI - Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 83 EP - 94 VL - 212 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/ LA - ru ID - TMF_2022_212_1_a5 ER -
%0 Journal Article %A N. N. Nefedov %A N. N. Deryugina %T Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 83-94 %V 212 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/ %G ru %F TMF_2022_212_1_a5
N. N. Nefedov; N. N. Deryugina. Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/
[1] A. A. Melnikova, N. N. Deryugina, “Suschestvovanie periodicheskogo resheniya v vide dvumernogo fronta v sisteme parabolicheskikh uravnenii”, Differ. uravneniya, 56:4 (2020), 475–489 | DOI | DOI
[2] A. A. Melnikova, N. N. Deryugina, “Dinamika avtovolnovogo fronta v modeli razvitiya urboekosistem”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2018, no. 3, 48–55 | DOI
[3] A. A. Melnikova, N. N. Deryugina, “Periodicheskie izmeneniya avtovolnovogo fronta v dvumernoi sisteme parabolicheskikh uravnenii”, Model. i analiz inform. sistem, 25:1 (2018), 112–124 | DOI
[4] N. Levashova, A. Sidorova, A. Semina, M. Ni, “A spatio-temporal autowave model of shanghai territory development”, Sustainability, 11:13 (2019), 3658, 13 pp. | DOI
[5] V. F. Butuzov, N. T. Levashova, A. A. Melnikova, “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 53:9 (2013), 1427–1447 | DOI | DOI
[6] N. T. Levashova, B. V. Tischenko, “Suschestvovanie i ustoichivost resheniya sistemy dvukh nelineinykh uravnenii diffuzii v srede s razryvnymi kharakteristikami”, Zh. vychisl. matem. i matem. fiz., 61:11 (2021), 1850–1872 | DOI | DOI
[7] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsiya-diffuziya-advetsiya: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI
[8] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Springer, New York, 1993 | DOI | MR
[9] A. A. Melnikova, “Suschestvovanie i ustoichivost periodicheskogo resheniya tipa fronta v dvukhkomponentnoi sisteme parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 59:7 (2019), 1184–1200 | DOI | DOI
[10] N. T. Levashova, A. A. Melnikova, S. V. Bytsyura, “Primenenie metoda differentsialnykh neravenstv dlya obosnovaniya resheniya sistemy parabolicheskikh uravnenii v vide dvizhuschegosya fronta”, Model. i analiz inform. sistem, 23:3 (2016), 317–325 | DOI | MR
[11] N. N. Nefedov, K. R. Schneider, A. Schuppert, “Jumping behavior of the reaction rate of fast bimolecular reactions”, Z. Angew. Math. Mech., 76:2 (1996), 69–72
[12] V. F. Butuzov, H. H. Nefedov, K. P. Shnaider, “Singulyarno vozmuschennye zadachi v sluchae smeny ustoichivosti”, Itogi nauki i tekhn. Ser. “Sovrem. matem. i ee prilozh.” Tematicheskie obzory, 109 (2002), 5–242 | DOI | MR