Existence and stability of a~stable stationary solution with a~boundary layer for a~system of reaction--diffusion equations with Neumann boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 83-94

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an initial boundary value problem for a singularly perturbed parabolic system of two reaction–diffusion-type equations with Neumann conditions, where the diffusion coefficients are of different degrees of smallness and the right-hand sides need not be quasimonotonic. We obtain an asymptotic approximation of the stationary solution with a boundary layer and prove existence theorems, the asymptotic stability in the sense of Lyapunov, and the local uniqueness of such a solution. The obtained result is applied to a class of problems of chemical kinetics.
Keywords: reaction–diffusion systems, stationary solution, quasimonotonicity conditions, method of differential inequalities, upper and lower solutions, boundary layer, stability in the sense of Lyapunov.
@article{TMF_2022_212_1_a5,
     author = {N. N. Nefedov and N. N. Deryugina},
     title = {Existence and stability of a~stable stationary solution with a~boundary layer for a~system of reaction--diffusion equations with {Neumann} boundary conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {212},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/}
}
TY  - JOUR
AU  - N. N. Nefedov
AU  - N. N. Deryugina
TI  - Existence and stability of a~stable stationary solution with a~boundary layer for a~system of reaction--diffusion equations with Neumann boundary conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 83
EP  - 94
VL  - 212
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/
LA  - ru
ID  - TMF_2022_212_1_a5
ER  - 
%0 Journal Article
%A N. N. Nefedov
%A N. N. Deryugina
%T Existence and stability of a~stable stationary solution with a~boundary layer for a~system of reaction--diffusion equations with Neumann boundary conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 83-94
%V 212
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/
%G ru
%F TMF_2022_212_1_a5
N. N. Nefedov; N. N. Deryugina. Existence and stability of a~stable stationary solution with a~boundary layer for a~system of reaction--diffusion equations with Neumann boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a5/