Existence and stability of a stationary solution of the system of diffusion equations in a medium with discontinuous characteristics under various quasimonotonicity conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 62-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic analysis is used to study the existence, local uniqueness, and asymptotic stability in the sense of Lyapunov of a solution of a one-dimensional nonlinear system of reaction–diffusion equations with various types of quasimonotonicity of the functions describing reactions. A feature of the problem is the discontinuities (jumps) of these functions at a single point on the segment on which the problem is posed. The solution with a large gradient in the vicinity of the discontinuity point is studied. Sufficient conditions for the existence of a stable stationary solution of systems with various quasimonotonicity conditions are given. The asymptotic method of differential inequalities is used to prove the existence and stability theorems. The main distinctive features of this method for various types of quasimonotonicity are listed.
Keywords: system of nonlinear equations, small parameter, internal transition layers, upper and lower solutions, asymptotic approximation of a solution, Lyapunov asymptotic stability, quasimonotonicity condition.
@article{TMF_2022_212_1_a4,
     author = {N. T. Levashova and B. V. Tischenko},
     title = {Existence and stability of a~stationary solution of the~system of diffusion equations in a~medium with discontinuous characteristics under various quasimonotonicity conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {62--82},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a4/}
}
TY  - JOUR
AU  - N. T. Levashova
AU  - B. V. Tischenko
TI  - Existence and stability of a stationary solution of the system of diffusion equations in a medium with discontinuous characteristics under various quasimonotonicity conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 62
EP  - 82
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a4/
LA  - ru
ID  - TMF_2022_212_1_a4
ER  - 
%0 Journal Article
%A N. T. Levashova
%A B. V. Tischenko
%T Existence and stability of a stationary solution of the system of diffusion equations in a medium with discontinuous characteristics under various quasimonotonicity conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 62-82
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a4/
%G ru
%F TMF_2022_212_1_a4
N. T. Levashova; B. V. Tischenko. Existence and stability of a stationary solution of the system of diffusion equations in a medium with discontinuous characteristics under various quasimonotonicity conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 62-82. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a4/

[1] V. N. Pavlenko, O. V. Ulyanova, “Metod verkhnikh i nizhnikh reshenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matem., 1998, no. 11, 69–76 | MR

[2] V. N. Pavlenko, O. V. Ulyanova, “Metod verkhnikh i nizhnikh reshenii dlya uravnenii parabolicheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 38:4 (2002), 499–504 | DOI | MR

[3] N. N. Nefëdov, M. K. Ni, “Vnutrennie sloi v odnomernom uravnenii reaktsiya-diffuziya s razryvnym reaktivnym chlenom”, Zh. vychisl. matem. i matem. fiz., 55:12 (2015), 2042–2048 | DOI | DOI | MR

[4] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “O periodicheskom vnutrennem sloe v zadache reaktsiya-diffuziya s istochnikom modulno-kubichnogo tipa”, Zh. vychisl. matem. i matem. fiz., 60:9 (2020), 1513–1532 | DOI | DOI

[5] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “Contrast structures in the reaction-diffusion-advection problem in the case of a weak reaction discontinuity”, Russ. J. Math. Phys., 29 (2022), 81–90 | DOI

[6] C. De Coster, F. Obersnel, P. A. Omari, “A qualitative analysis via lower and upper solutions of first order periodic evolutionary equations with lack of uniqueness”, Handbook of Differential Equations: Ordinary Differential Equations, v. 3, eds. A. Cañada, R. Drábek, A. Fonda, B. V. Elsevier, North-Holland, Amsterdam, 2006, 203–339 | DOI | MR

[7] S. Carl, D. Motreanu, “Extremal solutions for nonvariational quasilinear elliptic systems via expanding trapping regions”, Monatsh. Math., 182:4 (2017), 801–821 | DOI | MR

[8] V. Bögelein, F. Duzaar, R. Korte, C. Scheven, “The higher integrability of weak solutions of porous medium systems”, Adv. Nonlinear Anal., 8:1 (2018), 1004–1034 | DOI | MR

[9] N. T. Levashova, B. V. Tischenko, “Suschestvovanie i ustoichivost resheniya sistemy dvukh nelineinykh uravnenii diffuzii v srede s razryvnymi kharakteristikami”, Zh. vychisl. matem. i matem. fiz., 61:11 (2021), 1850–1872 | DOI | DOI

[10] A. E. Sidorova, N. T. Levashova, A. E. Semina, A. A. Melnikova, “The application of a distributed model of active media for the analysis of urban ecosystems development”, Matem. biologiya i bioinform., 13:2 (2018), 454–465 | DOI

[11] N. T. Levashova, A. E. Sidorova, A. E. Semina, Mingkang Ni, “A spatio-temporal autowave model of shanghai territory development”, Sustainability, 11:13 (2019), 3658, 13 pp. | DOI

[12] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii-diffuzii-advektsii: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI

[13] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, London, 2004 | DOI | MR

[14] A. Melnikova, N. Levashova, D. Lukyanenko, “Front dynamics in an activator-inhibitor system of equations”, Numerical Analysis and Its Applications (Lozenetz, Bulgaria, June 15–22, 2016), Lecture Notes in Computer Science, 10187, eds. I. Dimov, I. Faragó, L. Vulkov, Springer, Cham, 2017, 492–499 | DOI | MR | Zbl

[15] D. V. Lukyanenko, A. A. Melnikova, “Ispolzovanie metodov asimptoticheskogo analiza pri reshenii odnoi koeffitsientnoi obratnoi zadachi dlya sistemy nelineinykh singulyarno vozmuschennykh uravnenii tipa reaktsiya-diffuziya s kubicheskoi nelineinostyu”, Vych. met. programmirovanie, 20:4 (2019), 363–377 | DOI | MR

[16] D. V. Lukyanenko, A. A. Borzunov, M. A. Shishlenin, “Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front”, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105824, 10 pp. | DOI | MR

[17] D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation”, J. Inverse Ill-Posed Probl., 27:5 (2019), 745–758 | DOI | MR

[18] V. F. Butuzov, N. T. Levashova, A. A. Melnikova, “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme uravnenii s razlichnymi stepenyami malogo parametra”, Zh. vychisl. matem. i matem. fiz., 52:11 (2012), 1983–2003 | DOI | MR

[19] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl

[20] P. C. Fife, J. B. MacLeod, “The approach of solutions of nonlinear diffusion equation to a travelling front solutions”, Arch. Rational Mech. Anal., 65:4 (1977), 335–361 | DOI | MR

[21] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[22] B. V. Tischenko, “Suschestvovanie, lokalnaya edinstvennost i asimptoticheskaya ustoichivost pogransloinogo resheniya kraevoi zadachi Neimana dlya sistemy dvukh nelineinykh uravnenii s raznymi stepenyami malogo parametra”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2021, no. 5, 44–50 | DOI

[23] N. N. Nefedov, M. A. Davydova, “Kontrastnye struktury v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Differents. uravneniya, 48:5 (2012), 738–748 | DOI

[24] M. A. Davydova, “Suschestvovanie i ustoichivost reshenii s pogranichnymi sloyami v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Matem. zametki, 98:6 (2015), 853–864 | DOI | DOI | MR

[25] A. Fridman, Uravneniya s chastnymi proizvodnymi parabolicheskoro tipa, Mir, M., 1968 | Zbl