Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 40-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the periodic boundary value problem for two variants of a weakly dissipative complex Ginzburg–Landau equation. In the first case, we study a variant of such an equation that contains the cubic and quintic nonlinear terms. We study the problem of local bifurcations of traveling periodic waves under stability changes. We show that a countable set of two-dimensional invariant tori arises as a result of such bifurcations. Both types of bifurcations are possible in the considered formulation of the problem, soft (postcritical) and hard (subcritical) ones, depending on the choice of the coefficients in the equation. We obtain asymptotic formulas for the solutions forming the invariant tori. We also study the periodic boundary value problem for the equation that is called the nonlocal Ginzburg–Landau equation in physics. We show that the boundary value problem in the considered variant has an infinite-dimensional global attractor. We present the solutions forming such an attractor.
Keywords: Ginzburg–Landau equation, periodic boundary conditions, invariant manifold, single-mode solution, global attractor, stability.
Mots-clés : local bifurcation
@article{TMF_2022_212_1_a3,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {Local bifurcations and a~global attractor for two versions of the~weakly dissipative {Ginzburg{\textendash}Landau} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {40--61},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a3/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 40
EP  - 61
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a3/
LA  - ru
ID  - TMF_2022_212_1_a3
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 40-61
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a3/
%G ru
%F TMF_2022_212_1_a3
A. N. Kulikov; D. A. Kulikov. Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 40-61. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a3/

[1] I. S. Aranson, L. Kramer, “The world of the complex Ginzburg–Landau equation”, Rev. Modern Phys., 74:1 (2002), 99–143, arXiv: cond-mat/0106115 | DOI | MR

[2] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics, 19, Springer, Berlin, 1984 | DOI | MR

[3] M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon, M. Gisselfält, “On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation”, Phys. D, 44:3 (1990), 421–444 | DOI | MR

[4] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer, New York, 1997 | DOI | MR

[5] J. Scheuer, B. A. Malomed, “Stable and chaotic solutions of the complex Ginzburg–Landau equation with periodic boundary conditions”, Phys. D, 161:1–2 (2002), 102–115, arXiv: nlin/0112012 | DOI

[6] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | MR | Zbl

[7] F. Drazin, Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005 | DOI | MR

[8] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii ploskikh beguschikh voln obobschennogo kubicheskogo uravneniya Shredingera”, Differents. uravneniya, 46:9 (2010), 1290–1299 | DOI | MR | Zbl

[9] G. G. Malinetskii, A. B. Potapov, A. V. Podlazov, Nelineinaya dinamika: podkhody, rezultaty, nadezhdy, URSS, M., 2016

[10] F. J. Elmer, “Nonlinear and nonlocal dynamics of spatially extended systems: Stationary states, bifurcations and stability”, Phys. D, 30:3 (1998), 321–342 | DOI | MR

[11] J. Duan, H. Van Ly, E. S. Titi, “The effect of nonlocal interactions on the dynamics of the Ginzburg–Landau equation”, Z. Angew. Math. Phys., 47:3 (1996), 432–455 | DOI | MR

[12] A. Kulikov, D. Kulikov, “Invariant varieties of the periodic boundary value problem of the nonlocal Ginzburg–Landau equation”, Math. Methods Appl. Sci., 44:15 (2021), 11985–11997 | DOI | MR

[13] A. N. Kulikov, D. A. Kulikov, “Invariantnye mnogoobraziya slabodissipativnogo varianta nelokalnogo uravneniya Ginzburga–Landau”, Avtomat. i telemekh., 2021, no. 2, 94–110 | DOI | DOI

[14] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[15] I. Segal, “Non-linear semi-groups”, Ann. Math., 78:2 (1963), 339–364 | DOI | MR

[16] C. Ya. Yakubov, “Razreshimost zadachi Koshi dlya abstraktnykh kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozheniya”, Tr. MMO, 23 (1970), 37–60 | MR | Zbl

[17] P. E. Sobolevskii, “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. MMO, 10 (1967), 297–350 | MR | Zbl

[18] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl

[19] A. N. Kulikov, “Integralnye mnogoobraziya giperbolicheskikh uravnenii v sluchae, blizkom k kriticheskomu odnoi pary chistykh mnimykh kornei”, Vestnik Yaroslavskogo universiteta, Vyp. 13. Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1975, 94–117 | MR

[20] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | MR | Zbl

[21] J. E. Marsden, M. McCraken, The Hopf Bifurcations and its Applications, Applied Mathematical Sciences, 19, Springer, New York, 1976 | MR | Zbl

[22] A. N. Kulikov, Issledovanie nekotorykh klassov uravnenii giperbolicheskogo tipa, vstrechayuschikhsya v teorii uprugoi ustoichivosti i radiofizike, Diss. ...kand. fiz.-matem. nauk, Rost. gos. un-t, Rostov-na-Donu, 1977

[23] J. Guckenheimer, P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer, New York, 1983 | DOI | MR

[24] A. N. Kulikov, D. A. Kulikov, “Poslekriticheskie i dokriticheskie bifurkatsii beguschikh voln modifitsirovannogo uravneniya Ginzburga–Landau”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2009, no. 4, 71–78

[25] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | Zbl

[26] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR

[27] I. D. Chueshov, Vvedenie v teoriyu beskonechnomernykh dissipativnykh sistem, Izd-vo Akta, Kharkov, 1999 | MR

[28] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, AMS, Providence, RI, 2002 | DOI | MR

[29] G. R. Sell, Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer, New York, 2002 | DOI | MR