Mots-clés : local bifurcation
@article{TMF_2022_212_1_a3,
author = {A. N. Kulikov and D. A. Kulikov},
title = {Local bifurcations and a~global attractor for two versions of the~weakly dissipative {Ginzburg{\textendash}Landau} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {40--61},
year = {2022},
volume = {212},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a3/}
}
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov TI - Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 40 EP - 61 VL - 212 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a3/ LA - ru ID - TMF_2022_212_1_a3 ER -
%0 Journal Article %A A. N. Kulikov %A D. A. Kulikov %T Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 40-61 %V 212 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a3/ %G ru %F TMF_2022_212_1_a3
A. N. Kulikov; D. A. Kulikov. Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 40-61. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a3/
[1] I. S. Aranson, L. Kramer, “The world of the complex Ginzburg–Landau equation”, Rev. Modern Phys., 74:1 (2002), 99–143, arXiv: cond-mat/0106115 | DOI | MR
[2] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics, 19, Springer, Berlin, 1984 | DOI | MR
[3] M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon, M. Gisselfält, “On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation”, Phys. D, 44:3 (1990), 421–444 | DOI | MR
[4] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer, New York, 1997 | DOI | MR
[5] J. Scheuer, B. A. Malomed, “Stable and chaotic solutions of the complex Ginzburg–Landau equation with periodic boundary conditions”, Phys. D, 161:1–2 (2002), 102–115, arXiv: nlin/0112012 | DOI
[6] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | MR | Zbl
[7] F. Drazin, Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005 | DOI | MR
[8] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii ploskikh beguschikh voln obobschennogo kubicheskogo uravneniya Shredingera”, Differents. uravneniya, 46:9 (2010), 1290–1299 | DOI | MR | Zbl
[9] G. G. Malinetskii, A. B. Potapov, A. V. Podlazov, Nelineinaya dinamika: podkhody, rezultaty, nadezhdy, URSS, M., 2016
[10] F. J. Elmer, “Nonlinear and nonlocal dynamics of spatially extended systems: Stationary states, bifurcations and stability”, Phys. D, 30:3 (1998), 321–342 | DOI | MR
[11] J. Duan, H. Van Ly, E. S. Titi, “The effect of nonlocal interactions on the dynamics of the Ginzburg–Landau equation”, Z. Angew. Math. Phys., 47:3 (1996), 432–455 | DOI | MR
[12] A. Kulikov, D. Kulikov, “Invariant varieties of the periodic boundary value problem of the nonlocal Ginzburg–Landau equation”, Math. Methods Appl. Sci., 44:15 (2021), 11985–11997 | DOI | MR
[13] A. N. Kulikov, D. A. Kulikov, “Invariantnye mnogoobraziya slabodissipativnogo varianta nelokalnogo uravneniya Ginzburga–Landau”, Avtomat. i telemekh., 2021, no. 2, 94–110 | DOI | DOI
[14] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[15] I. Segal, “Non-linear semi-groups”, Ann. Math., 78:2 (1963), 339–364 | DOI | MR
[16] C. Ya. Yakubov, “Razreshimost zadachi Koshi dlya abstraktnykh kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozheniya”, Tr. MMO, 23 (1970), 37–60 | MR | Zbl
[17] P. E. Sobolevskii, “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. MMO, 10 (1967), 297–350 | MR | Zbl
[18] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl
[19] A. N. Kulikov, “Integralnye mnogoobraziya giperbolicheskikh uravnenii v sluchae, blizkom k kriticheskomu odnoi pary chistykh mnimykh kornei”, Vestnik Yaroslavskogo universiteta, Vyp. 13. Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1975, 94–117 | MR
[20] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | MR | Zbl
[21] J. E. Marsden, M. McCraken, The Hopf Bifurcations and its Applications, Applied Mathematical Sciences, 19, Springer, New York, 1976 | MR | Zbl
[22] A. N. Kulikov, Issledovanie nekotorykh klassov uravnenii giperbolicheskogo tipa, vstrechayuschikhsya v teorii uprugoi ustoichivosti i radiofizike, Diss. ...kand. fiz.-matem. nauk, Rost. gos. un-t, Rostov-na-Donu, 1977
[23] J. Guckenheimer, P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer, New York, 1983 | DOI | MR
[24] A. N. Kulikov, D. A. Kulikov, “Poslekriticheskie i dokriticheskie bifurkatsii beguschikh voln modifitsirovannogo uravneniya Ginzburga–Landau”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2009, no. 4, 71–78
[25] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | Zbl
[26] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR
[27] I. D. Chueshov, Vvedenie v teoriyu beskonechnomernykh dissipativnykh sistem, Izd-vo Akta, Kharkov, 1999 | MR
[28] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, AMS, Providence, RI, 2002 | DOI | MR
[29] G. R. Sell, Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer, New York, 2002 | DOI | MR