Quasidifferential operator and quantum argument shift method
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 33-39
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe an explicit formula for the first-order quasiderivation of an arbitrary central element of the universal enveloping algebra of a general linear Lie algebra. We apply it to show that derivations of any two central elements of the universal enveloping algebra commute. This contributes to the Vinberg problem of finding commutative subalgebras in universal enveloping algebras with the underlying Poisson algebras determined by the argument shift method.
Keywords: universal enveloping algebra, Lie algebra, quantum argument shift method
Mots-clés : deformation quantization.
@article{TMF_2022_212_1_a2,
     author = {Y. Ikeda},
     title = {Quasidifferential operator and quantum argument shift method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {33--39},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a2/}
}
TY  - JOUR
AU  - Y. Ikeda
TI  - Quasidifferential operator and quantum argument shift method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 33
EP  - 39
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a2/
LA  - ru
ID  - TMF_2022_212_1_a2
ER  - 
%0 Journal Article
%A Y. Ikeda
%T Quasidifferential operator and quantum argument shift method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 33-39
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a2/
%G ru
%F TMF_2022_212_1_a2
Y. Ikeda. Quasidifferential operator and quantum argument shift method. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a2/

[1] A. S. Mischenko, A. T. Fomenko, “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | DOI | MR | Zbl

[2] S. V. Manakov, “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego pril., 10:4 (1976), 93–94 | DOI | MR | Zbl

[3] A. A. Tarasov, “O nekotorykh kommutativnykh podalgebrakh v universalnoi obertyvayuschei algebre algebry Li $\mathfrak{gl}(n,\mathbb C)$”, Matem. sb., 191:9 (2000), 115–122 | DOI | DOI | MR | Zbl

[4] L. G. Rybnikov, “Metod sdviga invariantov i model Godena”, Funkts. analiz i ego pril., 40:3 (2006), 30–43 | DOI | DOI | MR | Zbl

[5] A. I. Molev, “Feigin–Frenkel center in types $B$, $C$ and $D$”, Invent. Math., 191:1 (2013), 1–34 | DOI | MR

[6] D. Gurevich, P. Pyatov, P. Saponov, “Braided Weyl algebras and differential calculus on $U(u(2))$”, J. Geom. Phys., 62:5 (2012), 1175–1188, arXiv: 1112.6258 | DOI | MR