Nonautonomous vector fields on $S^3$: Simple dynamics and wild embedding of separatrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 15-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct new substantive examples of nonautonomous vector fields on a $3$-dimensional sphere having simple dynamics but nontrivial topology. The construction is based on two ideas: the theory of diffeomorphisms with wild separatrix embedding and the construction of a nonautonomous suspension over a diffeomorphism. As a result, we obtain periodic, almost periodic, or even nonrecurrent vector fields that have a finite number of special integral curves possessing exponential dichotomy on $\mathbb R$ such that among them there is one saddle integral curve (with a $(3,2)$ dichotomy type) with a wildly embedded $2$-dimensional unstable separatrix and a wildly embedded $3$-dimensional stable manifold. All other integral curves tend to these special integral curves as $t\to \pm \infty$. We also construct other vector fields having $k\ge 2$ special saddle integral curves with the tamely embedded $2$-dimensional unstable separatrices forming mildly wild frames in the sense of Debrunner–Fox. In the case of periodic vector fields, the corresponding specific integral curves are periodic with the period of the vector field, and are almost periodic in the case of an almost periodic vector field.
Keywords: nonautonomous vector field, integral curve, uniform equivalence, exponential dichotomy, separatrix, wild embedding.
@article{TMF_2022_212_1_a1,
     author = {V. Z. Grines and L. M. Lerman},
     title = {Nonautonomous vector fields on $S^3$: {Simple} dynamics and wild embedding of separatrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {15--32},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - L. M. Lerman
TI  - Nonautonomous vector fields on $S^3$: Simple dynamics and wild embedding of separatrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 15
EP  - 32
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a1/
LA  - ru
ID  - TMF_2022_212_1_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%A L. M. Lerman
%T Nonautonomous vector fields on $S^3$: Simple dynamics and wild embedding of separatrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 15-32
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a1/
%G ru
%F TMF_2022_212_1_a1
V. Z. Grines; L. M. Lerman. Nonautonomous vector fields on $S^3$: Simple dynamics and wild embedding of separatrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 15-32. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a1/

[1] B. M. Levitan, V. V. Zhikov, Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR | MR | Zbl

[2] C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, New York, 2009 | DOI | MR

[3] L. M. Lerman, L. P. Shilnikov, “O klassifikatsii grubykh neavtonomnykh dinamicheskikh sistem 2-go poryadka s konechnym chislom yacheek”, Dokl. AN CCCR, 209:3 (1973), 544–547 | MR | Zbl

[4] L. M. Lerman, O neavtonomnykh dinamicheskikh sistemakh tipa Morsa–Smeila, Diss. ... kand. fiz.-matem. nauk, Gork. gos. un-t im. N. I. Lobachevskogo, Gorkii, 1975

[5] J. L. Massera, J. J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, 21, Academic Press, New York–London, 1966 | MR

[6] E. Artin, R. Fox, “Some wild cells and spheres in three-dimensional space”, Ann. Math., 49 (1948), 979–990 | DOI | MR

[7] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR

[8] C. Bonatti, V. Grines, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR

[9] C. Bonatti, V. Grines, V. Medvedev, E. Pecou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR

[10] V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical Systems on 2-and 3-maifolds, Developments in Mathematics, 46, Springer, Cham, 2016 | DOI | MR

[11] A. G. Vainshtein, L. M. Lerman, “Ravnomernye struktury i ekvivalentnost diffeomorfizmov”, Matem. zametki, 23:5 (1978), 739–752 | DOI | MR | Zbl

[12] A. G. Vainshtein, L. M. Lerman, “Neavtonomnye nadstroiki nad diffeomorfizmami i geometriya blizosti”, UMN, 31:5(191) (1976), 231–232 | MR | Zbl

[13] S. Smale, “Differential dynamical dystems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR

[14] J. L. Kelley, General Topology, Graduate Texts in Mathematics, 27, Springer, New York, 1975 | MR

[15] O. G. Harrold, H. C. Griffith, E. E. Posey, “A characterization of tame curves in three-space”, Trans. Amer. Math. Soc., 79 (1955), 12–34 | DOI | MR

[16] B. Mazur, “A note on some contractible 4-manifolds”, Ann. Math., 73:1 (1961), 221–228 | DOI | MR

[17] H. Debrunner, R. Fox, “A mildly wild embedding of an $n$-frame”, Duke Math. J., 27 (1960), 425–429 | DOI | MR

[18] O. Pochinka, “Diffeomorphisms with mildly wild frame of separatrices”, Univ. Iagel. Acta Math., 2009, no. 47, 149–154 | MR

[19] J. Cerf, “Sur les difféomorphismes de la sphère de dimension trois ($\Gamma_4$ = 0)”, Lecture Notes in Mathematics, 53, Springer, Berlin, 1968 | DOI | MR