Bernoulli shifts in predator–prey mappings
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results providing bounds of the nonwandering set of a mapping, hyperbolicity conditions, and the method of anti-integrability shed light on the global behavior of a discrete system. Following recent works, we use this approach to investigate the behavior of predator–prey systems in dimensions $2$ and $3$. Our goal is not only to present results regarding the existence of Bernoulli shifts and hyperbolicity in the phase space but also to emphasize the applicability of this approach in a variety of interesting systems.
Keywords: discrete systems, hyperbolicity, Bernoulli shifts, anti-integrability.
@article{TMF_2022_212_1_a0,
     author = {S. Anastassiou},
     title = {Bernoulli shifts in predator{\textendash}prey mappings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--14},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a0/}
}
TY  - JOUR
AU  - S. Anastassiou
TI  - Bernoulli shifts in predator–prey mappings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 3
EP  - 14
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a0/
LA  - ru
ID  - TMF_2022_212_1_a0
ER  - 
%0 Journal Article
%A S. Anastassiou
%T Bernoulli shifts in predator–prey mappings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 3-14
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a0/
%G ru
%F TMF_2022_212_1_a0
S. Anastassiou. Bernoulli shifts in predator–prey mappings. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a0/

[1] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[2] R. Devaney, Z. Nitecki, “Shift automorphisms in the Hénon mapping”, Commun. Math. Phys., 67:2 (1979), 137–146 | DOI | MR

[3] S. Aubry, G. Abramovici, “Chaotic trajectories in the standard map. The concept of anti-integrability”, Phys. D, 43:2–3 (1990), 199–219 | DOI | MR

[4] S. Aubry, “Anti-integrability in dynamical and variational problems”, Phys. D, 86:1–2 (1995), 284–296 | DOI | MR

[5] S. Bolotin, R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015–1029 | DOI | MR

[6] B. Aulbach, B. Kieninger, “An elementary proof for hyperbolicity and chaos of the logistic maps”, J. Differ. Equ. Appl., 10:13–15 (2004), 1243–1250 | DOI | MR

[7] Y.-C. Chen, “Anti-integrability in scattering billiards”, Dyn. Syst., 19:2 (2004), 145–159 | DOI | MR

[8] Y.-C. Chen, “Bernoulli shift for second order recurrence relations near the anti-integrable limit”, Discrete Contin. Dyn. Syst. B, 5:3 (2005), 587–598 | DOI | MR

[9] C. Baesens, Y.-C. Chen, R. S. MacKay, “Abrupt bifurcations in chaotic scattering: view from the anti-integrable limit”, Nonlinearity, 26:9 (2013), 2703–2730 | DOI | MR | Zbl

[10] R. S. MacKay, J. D. Meiss, “Cantori for symplectic maps near the anti-integrable limit”, Nonlinearity, 5:1 (1992), 149–160 | DOI | MR

[11] T.-H. Chen, W.-W. Lin, C.-C. Peng, “Chaotic orbits for differentiable maps near anti-integrable limits”, J. Math. Anal. Appl., 435:1 (2016), 889–916 | DOI | MR

[12] S. V. Bolotin, D. V. Treschev, “Antiintegriruemyi predel”, UMN, 70:6(426) (2015), 3–62 | DOI | DOI | MR | Zbl

[13] M.-C. Li, M. Malkin, “Topological horseshoes for perturbations of singular difference equations”, Nonlinearity, 19:4 (2006), 795–811 | DOI | MR

[14] V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. MMO, 44 (1982), 150–212 | MR | Zbl

[15] M.-C. Li, M. Malkin, “Bounded nonwandering sets for polynomial mappings”, J. Dynam. Control Systems, 10:3 (2004), 377–389 | DOI | MR

[16] B.-S. Du, M.-C. Li, M. I. Malkin, “Topological horseshoes for Arneodo–Coullet–Tresser maps”, Regul. Chaotic Dyn., 11:2 (2006), 181–190 | DOI | MR

[17] S. Anastasiu, “Slozhnoe povedenie v kubicheskikh otobrazheniyakh Eno”, TMF, 207:2 (2021), 202–209 | DOI | DOI

[18] J. Wang, M. Fečkan, “Dynamics of a discrete nonlinear prey-predator model”, Internat. J. Bifurc. Chaos, 30:4 (2020), 2050055, 15 pp. | DOI | MR

[19] G. I. Bischi, F. Tramontana, “Three-dimensional discrete-time Lotka–Volterra models with an application to industrial clusters”, Commun. Nonlinear Sci. Numer. Simul., 15:10 (2010), 3000–3014 | DOI | MR

[20] L. Gardini, R. Lupini, C. Mammana, M. G. Messia, “Bifurcations and transition to chaos in the three-dimensional Lotka–Volterra map”, SIAM J. Appl. Math., 47:3 (1987), 455–482 | DOI | MR

[21] X. Liu, D. Xiao, “Complex dynamic behaviors of a discrete-time predator-pray system”, Chaos Solitons Fractals, 32:1 (2007), 80–94 | DOI | MR

[22] Y.-C. Chen, “Smale horseshoe via anti-integrability”, Chaos Solitons Fractals, 28:2 (2006), 377–385 | DOI | MR

[23] H.-J. Chen, M.-C. Li, “Stability of symbolic embeddings for difference equations and their multidimensional pertubations”, J. Differ. Equ., 258:3 (2015), 906–918 | DOI | MR

[24] L. Barreira, C. Valls, Dynamical Systems. An introduction, Springer, London, 2013 | DOI | MR

[25] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR

[26] A. N. Kolmogorov, S. V. Fomin, Introductory Real Analysis, Dover, New York, 1975 | MR