Bernoulli shifts in predator--prey mappings
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
Results providing bounds of the nonwandering set of a mapping, hyperbolicity conditions, and the method of anti-integrability shed light on the global behavior of a discrete system. Following recent works, we use this approach to investigate the behavior of predator–prey systems in dimensions $2$ and $3$. Our goal is not only to present results regarding the existence of Bernoulli shifts and hyperbolicity in the phase space but also to emphasize the applicability of this approach in a variety of interesting systems.
Keywords:
discrete systems, hyperbolicity, Bernoulli shifts, anti-integrability.
@article{TMF_2022_212_1_a0,
author = {S. Anastassiou},
title = {Bernoulli shifts in predator--prey mappings},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--14},
publisher = {mathdoc},
volume = {212},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a0/}
}
S. Anastassiou. Bernoulli shifts in predator--prey mappings. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a0/