Einstein–Maxwell equations: Solution-generating methods as “coordinate” transformations in the solution spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 502-534 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution-generating methods discovered for integrable reductions of the Einstein and Einstein–Maxwell field equations (soliton-generating techniques, Bäcklund transformations, HKX transformations, Hauser–Ernst homogeneous Hilbert problem, and other group-theoretical methods) can be described explicitly as transformations of especially defined “coordinates” in the infinite-dimensional solution spaces of these equations. In general, the role of such “coordinates” for every local solution can be performed by monodromy data of fundamental solutions of the corresponding spectral problems. However, for large classes of fields, these can be the values of Ernst potentials on the boundaries that consist of degenerate orbits of the space–time isometry group such that space–time geometry and the electromagnetic fields behave regularly near these boundaries. In this paper, transformations of such “coordinates” corresponding to different known solution-generating procedures are described by relatively simple algebraic expressions that do not require any particular choice of the initial (background) solution. Explicit forms of these transformations allow us to find the interrelations between the sets of free parameters that arise in different solution-generating procedures and to determine some physical and geometrical properties of each generating solution even before a detail calculations of all its components.
Keywords: gravitational and electromagnetic fields, Einstein–Maxwell equations, integrability, solution-generating methods.
@article{TMF_2022_211_3_a7,
     author = {G. A. Alekseev},
     title = {Einstein{\textendash}Maxwell equations: {Solution-generating} methods as {\textquotedblleft}coordinate{\textquotedblright} transformations in the~solution spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {502--534},
     year = {2022},
     volume = {211},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a7/}
}
TY  - JOUR
AU  - G. A. Alekseev
TI  - Einstein–Maxwell equations: Solution-generating methods as “coordinate” transformations in the solution spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 502
EP  - 534
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a7/
LA  - ru
ID  - TMF_2022_211_3_a7
ER  - 
%0 Journal Article
%A G. A. Alekseev
%T Einstein–Maxwell equations: Solution-generating methods as “coordinate” transformations in the solution spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 502-534
%V 211
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a7/
%G ru
%F TMF_2022_211_3_a7
G. A. Alekseev. Einstein–Maxwell equations: Solution-generating methods as “coordinate” transformations in the solution spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 502-534. http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a7/

[1] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[2] G. A. Alekseev, “Integriruemye i neintegriruemye struktury v uravneniyakh Einshteina–Maksvella c abelevoi gruppoi izometrii $\mathcal{G}_2$”, Trudy MIAN, 295 (2016), 7–33 | DOI | DOI | MR

[3] J. Ehlers, Konstruktionen und Charakterisierungen von Lösungen der Einsteinschen Gravitationsfeldgleichungen, Ph.D. thesis, University of Hamburg, Hamburg, 1957

[4] J. Ehlers, Les theories relativistes de la gravitation, CNRS, Paris, 1959

[5] B. K. Harrison, “New solutions of the Einstein–Maxwell equations from old”, J. Math. Phys., 9:11 (1968), 1744–1752 | DOI

[6] D. Kramer, G. Neugebauer, “Eine exakte stationäre Lösung der EINSTEIN–MAXWELL–Gleichungen”, Ann. Phys., 479:1–2 (1969), 59–61 | MR

[7] W. Kinnersley, “Generation of stationary Einstein–Maxwell fields”, J. Math. Phys., 14:5 (1973), 651–653 | DOI | MR

[8] R. Geroch, “A method for generating solutions of Einstein's equations. II”, J. Math. Phys., 13:3 (1972), 394–404 | DOI | MR

[9] W. Kinnersley, “Symmetries of the stationary Einstein–Maxwell field equations. I”, J. Math. Phys., 18:8 (1977), 1529–1537 | DOI | MR

[10] W. Kinnersley, D. M. Chitre, “Symmetries of the stationary Einstein–Maxwell field equations. II”, J. Math. Phys., 18:8 (1977), 1538–1542 | DOI | MR

[11] W. Kinnersley, D. M. Chitre, “Symmetries of the stationary Einstein–Maxwell field equations. III”, J. Math. Phys., 19:9 (1978), 1926–1931 | DOI

[12] W. Kinnersley, D. M. Chitre, “Symmetries of the stationary Einstein–Maxwell field equations. IV. Transformations which preserve asymptotic flatness”, J. Math. Phys., 19:10 (1978), 2037–2042 | DOI

[13] B. Julia, “Application of supergravity to gravitation theory”, Unified Field Theories of more than 4 Dimensions, Including Exact Solutions, Proceedings of the International School of Cosmology and Gravitation (Erice, Trapani, Sicily, May 20 – June 1, 1982), eds. V. De Sabbata, E. Schmutzer, World Sci., Singapore, 1983, 215–233 | MR

[14] B. Julia, “Kac–Moody symmetry of gravitation and supergravity theories”, Applications of Group Theory in Physics and Mathematical Physics (Chicago, July, 1982), Lectures in Applied Mathematics, 21, eds. M. Flato, P. Sally, G. Zuckerman, AMS, Providence, RI, 1985, 353–373 | MR

[15] P. Breitenlohner, D. Maison, “On the Geroch group”, Ann. Inst. H. Poincaré Phys. Theor., 46:2 (1987), 215–246 | MR

[16] V. A. Belinskii, V. E. Zakharov, “Integrirovanie uravnenii Einshteina metodom obratnoi zadachi rasseyaniya i vychislenie tochnykh solitonnykh reshenii”, ZhETF, 75:6 (1978), 1953–1971 | MR

[17] V. A. Belinskii, V. E. Zakharov, “Statsionarnye gravitatsionnye solitony s aksialnoi simmetriei”, ZhETF, 77:1 (1979), 3–19 | MR

[18] G. A. Alekseev, “O solitonnykh resheniyakh uravnenii Einshteina v vakuume”, Dokl. AN SSSR, 256:4 (1981), 827–830 | MR

[19] G. A. Aleksejev, “Soliton configurations of Einstein–Maxwell fields”, 9th International Conference on General Relativity and Gravitation, Abstracts of Contributed Papers (Friedrich Schiller University, Jena, German Democratic Republic, July 14–19, 1980), v. 1, ed. E. Schmutzer, International Society on General Relativity and Gravitation, Jena, DDR, 1980, 2–3

[20] G. A. Alekseev, “N-solitonnye resheniya uravnenii Einshteina–Maksvella”, Pisma v ZhETF, 32:4 (1980), 301–303

[21] B. K. Harrison, “Bäcklund transformation for the Ernst equation of general relativity”, Phys. Rev. Lett., 41:18 (1978), 1197–1200 | DOI | MR

[22] H. D. Wahlquist, F. B. Estabrook, “Bäcklund transformation for solutions of the Korteweg–de Vries equation”, Phys. Rev. Lett., 31:23 (1973), 1386–1390 ; “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16:1 (1975), 1–7 | DOI | MR | DOI | MR

[23] B. K. Harrison, “New large family of vacuum solutions of the equations of general relativity”, Phys. Rev. D, 21:9 (1980), 1695–1697 | DOI | MR

[24] B. K. Harrison, “Unification of Ernst-equation Bäcklund transformations using a modified Wahlquist–Estabrook technique”, J. Math. Phys., 24:8 (1983), 2178–2187 | DOI | MR

[25] G. Neugebauer, “Bäcklund transformations of axially symmetric stationary gravitational fields”, J. Phys. A: Math. Gen., 12:4 (1979), L67–L70 | DOI | MR

[26] G. Neugebauer, “Recursive calculation of axially symmetric statiomary Einstein fields”, J. Phys. A: Math. Gen., 13:5 (1980), 1737–1740 | DOI | MR

[27] G. Neugebauer, “A general integral of the axially symmetric stationary Einstein equations”, J. Phys. A: Math. Gen., 13:2 (1980), L19–L21 | DOI | MR

[28] C. Hoenselaers, W. Kinnersley, B. C. Xanthopoulos, “Generation of asymptotically flat, stationary space-times with any number of parameters”, Phys. Rev. Lett., 42:8 (1979), 481–482 | DOI

[29] C. Hoenselaers, W. Kinnersley, B. C. Xanthopoulos, “Symmetries of the stationary Einstein–Maxwell equations. VI. Transformations which generate asymptotically flat spacetimes with arbitrary multipole moments”, J. Math. Phys., 20:12 (1979), 2530–2536 | DOI

[30] I. Hauser, F. J. Ernst, “Integral equation method for effecting Kinnersley–Chitre transformations”, Phys. Rev. D, 20:2 (1979), 362–369 | DOI | MR

[31] I. Hauser, F. J. Ernst, “A homogeneous Hilbert problem for the Kinnersley–Chitre transformations”, J. Math. Phys., 21:5 (1980), 1126–1140 | DOI | MR

[32] F. J. Ernst, I. Hauser, “On the transformation of one electrovac spacetime into another”, 9th International Conference on General Relativity and Gravitation, Abstracts of Contributed Papers (Friedrich Schiller University, Jena, German Democratic Republic, July 14–19, 1980), v. 1, ed. E. Schmutzer, International Society on General Relativity and Gravitation, Jena, DDR, 1980, 84–85

[33] I. Hauser, F. J. Ernst, “A Fredholm equation for effecting Kinnersley–Chitre transformations”, 9th International Conference on General Relativity and Gravitation, Abstracts of Contributed Papers (Friedrich Schiller University, Jena, German Democratic Republic, July 14–19, 1980), v. 1, ed. E. Schmutzer, International Society on General Relativity and Gravitation, Jena, DDR, 1980, 89–90

[34] I. Hauser, F. J. Ernst, “Integral equation method for effecting Kinnersley–Chitre transformations. II”, Phys. Rev. D, 20:8 (1979), 1783–1790 | DOI | MR

[35] I. Hauser, F. J. Ernst, “A homogeneous Hilbert problem for the Kinnersley–Chitre transformations of electrovac spacetimes”, J. Math. Phys., 21:6 (1980), 1418–1422 | DOI | MR

[36] D. Kramer, G. Neugebauer, “Prolongation structure and linear eigenvalue equations for Einstein–Maxwell fields”, J. Phys. A: Math. Gen., 14:9 (1981), L333–L338 | DOI | MR

[37] D. Kramer, “Equivalence of various pseudopotential approaches for Einstein–Maxwell fields”, J. Phys. A: Math. Gen., 15:7 (1982), 2201–2207 | DOI | MR

[38] G. Neugebauer, D. Kramer, “Einstein–Maxwell solitons”, J. Phys. A: Math. Gen., 16:9 (1983), 1927–1936 | DOI | MR

[39] G. A. Alekseev, “Tochnye resheniya v obschei teorii otnositelnosti”, Tr. MIAN SSSR, 176 (1987), 211–258 | MR | Zbl

[40] A. Eriş, M. Gürses, A. Karasu, “Symmetric Space property and an inverse scattering formulation of the SAS Einstein–Maxwell field equations”, J. Math. Phys., 25:5 (1984), 1489–1495 | DOI | MR

[41] C. M. Cosgrove, “Relationship between the group-theoretic and soliton-theoretic techniques for generating stationary axisymmetric gravitational solutions”, J. Math. Phys., 21:9 (1980), 2417–2447 | DOI | MR

[42] C. M. Cosgrove, “Bäcklund transformations in the Hauser–Ernst formalism for stationary axisymmetric spacetimes”, J. Math. Phys., 22:11 (1981), 2624–2639 | DOI | MR

[43] C. M. Cosgrove, “Relationship between the inverse scattering techniques of Belinskii–Zakharov and Hauser–Ernst in general relativity”, J. Math. Phys., 23:4 (1982), 615–633 | DOI | MR

[44] G. A. Alekseev, “Metod obratnoi zadachi rasseyaniya i singulyarnye integralnye uravneniya dlya vzaimodeistvuyuschikh bezmassovykh polei”, Dokl. AN SSSR, 283:3 (1985), 577–582 | MR

[45] F. J. Ernst, “New formulation of the axially symmetric gravitational field problem”, Phys. Rev., 167:5 (1968), 1175–1177 | DOI

[46] F. J. Ernst, “New formulation of the axially symmetric gravitational field problem. II”, Phys. Rev., 168:5 (1968), 1415–1417 | DOI

[47] V. Belinski, E. Verdaguer, Gravitational Solitons, Cambridge Univ. Press, Cambridge, 2001 | MR

[48] G. A. Alekseev, “Gravitational solitons and monodromy transform approach to solution of integrable reductions of Einstein equations”, Phys. D, 152–153 (2001), 97–103, arXiv: gr-qc/0001012 | DOI | MR

[49] N. R. Sibgatullin, Kolebaniya i volny v silnykh gravitatsionnykh i elektromagnitnykh polyakh, Nauka, M., 1984 | DOI | MR

[50] G. A. Alekseev, “Explicit form of the extended family of electrovacuum solutions with arbitrary number of parameters”, General Relativity and Gravitation, Proceedings of the 13th International Conference (Córdoba, Argentina, June 28 – July 4, 1992), eds. R. J. Gleiser, C. N. Kozameh, O. M. Moreschi, IOP, London, 1993, 3–4 | MR

[51] G. A. Alekseev, J. B. Griffiths, “Infinite hierarchies of exact solutions of the Einstein and Einstein–Maxwell equations for interacting waves and inhomogeneous cosmologies”, Phys. Rev. Lett., 84:23 (2000), 5247–5250 | DOI | MR

[52] D. A. Korotkin, V. B. Matveev, “Algebrogeometricheskie resheniya uravnenii gravitatsii”, Algebra i analiz, 1:2 (1989), 77–102 | MR | Zbl

[53] G. A. Alekseev, “Integrability of the boundary value problems for the Ernst equations”, Nonlinear Evolution Equations and Dynamical Systems (NEEDS {'}92), Proceedings of the Eighth International Workshop (Dubna, July 6–17, 1992), eds. V. Makhan'kov, I. Puzynin, O. Pashaev, World Sci., Singapore, 1993, 5–10

[54] R. Meinel, M. Ansorg, A. Kleinwächter, G. Neugebauer, D. Petroff, Relativistic Figures of Equilibrium, Cambridge Univ. Press, Cambridge, 2008 | DOI | MR

[55] G. A. Alekseev, J. B. Griffiths, “Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem”, Class. Quantum Grav., 21:23 (2004), 5623–5654, arXiv: gr-qc/0410047 | DOI | MR