Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 491-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Blume–Capel model with a countable set $\mathbb Z$ of spin values and a force $J\in \mathbb R$ of interaction between the nearest neighbors on a Cayley tree of order $k\geq 2$. The following results are obtained. Let $\theta=e^{-J/T}$, $T>0$, be the temperature. For $\theta\geq1$, there exist no translation invariant Gibbs measures or $2$-periodic Gibbs measures. For $0<\theta<1$, we prove the uniqueness of a translation-invariant Gibbs measure. Let $\Theta=\sum_i\theta^{(k+1)i^2}$ and $\Theta_\mathrm{cr}(k)=k^k/(k-1)^{k+1}$. If $0<\Theta\leq\Theta_\mathrm{cr}$, then there exists exactly one $2$-periodic Gibbs measure that is translation invariant. For $\Theta>\Theta_\mathrm{cr}$, there exist exactly three $2$-periodic Gibbs measures, one of which is a translation-invariant Gibbs measure.
Keywords: Cayley tree, HC Blume–Capel model, Gibbs measure.
@article{TMF_2022_211_3_a6,
     author = {N. N. Ganikhodzhaev and U. A. Rozikov and N. M. Khatamov},
     title = {Gibbs measures for {the~HC} {Blume{\textendash}Capel} model with countably many states on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {491--501},
     year = {2022},
     volume = {211},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a6/}
}
TY  - JOUR
AU  - N. N. Ganikhodzhaev
AU  - U. A. Rozikov
AU  - N. M. Khatamov
TI  - Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 491
EP  - 501
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a6/
LA  - ru
ID  - TMF_2022_211_3_a6
ER  - 
%0 Journal Article
%A N. N. Ganikhodzhaev
%A U. A. Rozikov
%A N. M. Khatamov
%T Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 491-501
%V 211
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a6/
%G ru
%F TMF_2022_211_3_a6
N. N. Ganikhodzhaev; U. A. Rozikov; N. M. Khatamov. Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 491-501. http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a6/

[1] F. Henning, C. Külske, “Coexistence of localized Gibbs measures and delocalized gradient Gibbs measures on trees”, Ann. Appl. Probab., 31:5 (2021), 2284–2310 | DOI | MR

[2] S. Buchholz, “Phase transitions for a class of gradient fields”, Probab. Theory Related Fields, 179:3–4 (2021), 969–1022 | DOI | MR

[3] F. Henning, C. Külske, Existence of gradient Gibbs measures on regular trees which are not translation invariant, arXiv: 2102.11899

[4] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[5] G. Brightwell, O. Häggström, P. Winkler, “Non monotonic behavior in hard-core and Widom–Rowlinson models”, J. Statist. Phys., 94:3–4 (1999), 415–435 | DOI | MR

[6] F. P. Kelly, “Stochastic models of computer communication systems. With discussion”, J. R. Statist. Soc. Ser., 47:3 (1985), 379–395 | MR

[7] A. E. Mazel, Yu. M. Suhov, “Random surfaces with two-sided constraints: An application of the theory of dominant ground states”, J. Statist. Phys., 64:1–2 (1991), 111–134 | DOI | MR

[8] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | DOI | MR

[9] R. M. Khakimov, M. T. Makhammadaliev, “Usloviya edinstvennosti i needinstvennosti slabo periodicheskikh mer Gibbsa dlya modeli ‘hard core’”, TMF, 204:2 (2020), 258–279 | DOI | DOI | MR

[10] G. R. Brightwell, P. Winkler, “Graph homomorphisms and phase transitions”, J. Combin. Theory Ser. B, 77:2 (1999), 221–262 | DOI | MR

[11] N. N. Ganikhodjaev, U. A. Rozikov, “The Potts model with countable set of spin values on a Cayley tree”, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR

[12] Z. Ye, “Models of gradient type with sub-quadratic actions”, J. Math. Phys., 60:7 (2019), 073304, 26 pp., arXiv: 1807.00258 | DOI | MR

[13] F. Henning, C. Külske, A. Le Ny, U. A. Rozikov, “Gradient Gibbs measures for the SOS model with countable values on a Cayley tree”, Electron. J. Probab., 24 (2019), 104, 23 pp. | DOI | MR

[14] E. N. M. Cirillo, E. Olivieri, “Metastabilty and nucleation for the Blume–Capel model. Different mechanisms of transition”, J. Statist. Phys., 83:3–4 (1996), 473–554, arXiv: hep-th/9505055 | DOI | MR

[15] P. E. Theodorakis, N. J. Fytas, “Monte Carlo study of the triangular Blume–Capel model under bond randomness”, Phys. Rev. E, 86:1 (2012), 011140, 9 pp. | DOI

[16] S. Kim, “Metastability of Blume–Capel model with zero chemical potential and zero external field”, J. Statist. Phys., 184:3 (2021), 33, 41 pp. | DOI | MR

[17] N. Khatamov, R. Khakimov, “Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree”, Zhurn. matem. fiz., anal., geom., 15:2 (2019), 239–255 | DOI | MR

[18] N. M. Khatamov, “Translation-invariant extreme Gibbs measures for the Blume–Capel model with a wand on a Cayley tree”, Ukr. matem. zhurn., 72:4 (2020), 540–556 | DOI | DOI

[19] N. M. Khatamov, “Struktury Khollideya v modeli Blyuma–Kapelya molekuly DNK”, TMF, 206:3 (2021), 439–447 | DOI | DOI | MR

[20] N. M. Khatamov, “Holliday junctions in the HC Blume–Capel model in ‘one case’ on DNA”, Nanosistemy: fizika, khimiya, matematika, 12:5 (2021), 563–568 | DOI

[21] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989 | DOI | MR | MR | Zbl | Zbl

[22] D. Galvin, F. Martinelli, K. Ramanan, P. Tetali, “The multistate hard core model on a regular tree”, SIAM J. Discrete Math., 25:2 (2011), 894–915 | DOI | MR

[23] F. Martinelli, A. Sinclair, D. Weitz, “Fast mixing for independent sets, coloring and other models on trees”, Random Struct. Algor., 31:2 (2007), 134–172 | DOI | MR

[24] H. Kesten, “Quadratic transformations: A model for population growth. I”, Adv. Appl. Probab., 2:1 (1970), 1–82 | DOI | MR