Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the  relativistic configuration representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 455-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct approximate analytic solutions of the Logunov–Tavkhelidze equation in the case of a potential that, in the one-dimensional relativistic configuration representation, has the form analogous to the potential of the nonrelativistic harmonic oscillator in the coordinate representation. The wave functions are obtained in both the momentum and relativistic configuration representations. The approximate values of the energy of the relativistic harmonic oscillator are the roots of transcendental equations. The wave functions in the relativistic configuration representation have additional zeros in comparison with the wave functions of the corresponding states of the nonrelativistic harmonic oscillator in the coordinate representation.
Keywords: quasipotential equation, relativistic configuration representation, integral equation, harmonic oscillator, wave function, energy spectrum, Macdonald function.
Mots-clés : Sturm–Liouville problem
@article{TMF_2022_211_3_a4,
     author = {Yu. A. Grishechkin and V. N. Kapshai},
     title = {Approximate analytic solution of {the~Logunov{\textendash}Tavkhelidze} equation for a~one-dimensional oscillator potential in the~ relativistic configuration representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {455--468},
     year = {2022},
     volume = {211},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a4/}
}
TY  - JOUR
AU  - Yu. A. Grishechkin
AU  - V. N. Kapshai
TI  - Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the  relativistic configuration representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 455
EP  - 468
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a4/
LA  - ru
ID  - TMF_2022_211_3_a4
ER  - 
%0 Journal Article
%A Yu. A. Grishechkin
%A V. N. Kapshai
%T Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the  relativistic configuration representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 455-468
%V 211
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a4/
%G ru
%F TMF_2022_211_3_a4
Yu. A. Grishechkin; V. N. Kapshai. Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the  relativistic configuration representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 455-468. http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a4/

[1] A. A. Logunov, A. N. Tavkhelidze, “Quasi-optical approach in quantum field theory”, Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR

[2] V. G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude”, Nucl. Phys. B, 6:2 (1968), 125–148 | DOI

[3] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690

[4] V. N. Kapshai, N. B. Skachkov, “Tochnoe reshenie kovariantnogo dvukhchastichnogo odnovremennogo uravneniya s superpozitsiei kvazipotentsialov odnobozonnogo obmena”, TMF, 53:1 (1982), 32–42 | DOI | MR

[5] V. N. Kapshai, T. A. Alferova, “Analog metoda Frobeniusa dlya resheniya odnorodnykh integralnykh uravnenii kvazipotentsialnogo podkhoda v relyativistskom konfiguratsionnom predstavlenii”, Izv. vuzov. Fizika, 40:7 (1997), 53–61 | DOI

[6] V. N. Kapshai, T. A. Alferova, “Relativistic two-particle one-dimensional scattering problem for superposition of $\delta$-potentials”, J. Phys. A: Math. Gen., 32:28 (1999), 5329–5342 | DOI | MR

[7] V. N. Kapshai, T. A. Alferova, “Odnomernye relyativistskie zadachi o svyazannykh sostoyaniyakh i rasseyanii dlya superpozitsii dvukh $\delta$-potentsialov”, Izv. vuzov. Fizika, 45:1 (2002), 3–10 | DOI

[8] V. N. Kapshai, Yu. A. Grishechkin, “Relyativistskie uravneniya s nekotorymi tochechnymi potentsialami”, Izv. vuzov. Fizika, 52:6 (2009), 9–15 | DOI | MR

[9] V. N. Kapshai, Yu. A. Hryshechkin, “The relativistic equations with a nonlinear delta-potential”, Nonlinear Phenom. Complex Syst., 12:1 (2009), 75–80

[10] V. N. Kapshai, Yu. A. Grishechkin, “Relyativistskaya zadacha o s-sostoyaniyakh rasseyaniya dlya superpozitsii dvukh potentsialov `$\delta$-sfera' ”, PFMT, 2015, no. 2(23), 7–12

[11] V. N. Kapshai, N. B. Skachkov, “Tochnye resheniya kvazipotentsialnykh uravnenii dlya kulonovskogo i lineinogo zapirayuschego potentsialov”, TMF, 55:2 (1983), 236–245 | DOI

[12] E. E. Boos, V. I. Savrin, E. M. Shablygin, “Tochnoe reshenie kvazipotentsialnogo uravneniya metodom konturnogo integrirovaniya”, TMF, 72:2 (1987), 197–203 | DOI

[13] V. N. Kapshai, S. P. Kuleshov, N. B. Skachkov, “Ob odnom klasse tochnykh reshenii kvazipotentsialnykh uravnenii”, TMF, 55:3 (1983), 349–360 | DOI | MR

[14] V. N. Kapshai, “Integral equations of relativistic bound state theory and Sturm–Liouville problem”, Operator Methods in Ordinary and Partial Differential Equations (S. Kovalevsky Symposium, University of Stockholm, Stockholm, June 2000), Operator Theory: Advances and Applications, 132, eds. S. Albeverio, N. Elander, W. Norrie Everitt, P. Kurasov, Birkhäuser, Basel, 2002, 199–206 | MR

[15] V. N. Kapshai, S. I. Fialka, “Resheniya relyativistskikh dvukhchastichnykh uravnenii s proizvolnym orbitalnym momentom”, Izv. vuzov. Fizika, 60:1 (2017), 34–43 | DOI

[16] E. A. Dei, V. N. Kapshai, N. B. Skachkov, “Tochnoe reshenie kvazipotentsialnykh uravnenii obschego vida s khromodinamicheskim vzaimodeistviem”, TMF, 69:1 (1986), 55–68 | DOI | MR

[17] N. M. Atakishiev, R. M. Mir-Kasimov, Sh. M. Nagiev, “Kvazipotentsialnye modeli relyativistskogo ostsillyatora”, TMF, 44:1 (1980), 47–62 | DOI | MR

[18] N. M. Atakishiyev, R. M. Mir-Kasimov, Sh. M. Nagiyev, “A relativistic model of the isotropic oscillator”, Ann. Phys., 42:1 (1985), 25–30 | DOI | MR

[19] Sh. M. Nagiyev, E. I. Jafarov, R. M. Imanov, “The relativistic linear singular oscillator”, J. Phys. A: Math. Gen., 36:28 (2003), 7813–7824, arXiv: math-ph/0302042 | DOI | MR

[20] S. M. Nagiyev, E. I. Jafarov, R. M. Imanov, L. Homorodean, “A relativistic model of the isotropic three-dimensional singular oscillator”, Phys. Lett. A, 334:4 (2005), 260–266, arXiv: math-ph/0411054 | DOI | MR

[21] R. A. Frick, “Model of a relativistic oscillator in a generalized Schrödinger picture”, Ann. Phys., 523:11 (2011), 871–882 | DOI | MR

[22] Sh. M. Nagiyev, A. I. Ahmadov, “Exact solution of the relativistic finite-difference equation for the Coulomb plus a ring-shaped-like potential”, Internat. J. Modern Phys. A, 34:17 (2019), 1950089, 17 pp. | DOI | MR

[23] Sh. M. Nagiev, R. M. Mir-Kasimov, “Relyativistskii lineinyi ostsillyator pod deistviem postoyannoi vneshnei sily. Volnovye funktsii i dinamicheskaya gruppa simmetrii”, TMF, 208:3 (2021), 481–494 | DOI | DOI

[24] E. E. Boos, V. I. Savrin, S. A. Shichanin, “Osobennosti spektra relyativistskoi svyazannoi sistemy v kvazipotentsialnoi yame s barerom”, TMF, 77:2 (1988), 247–252 | DOI

[25] A. O. Gelfond, Ischislenie konechnykh raznostei, Librokom, M., 2012 | MR

[26] V. Sh. Gogokhiya, “Svedenie kvazipotentsialnykh uravnenii k zadacham Shturma–\allowbreakLiuvillya i metod etalonnogo uravneniya”, TMF, 48:1 (1981), 80–88 | DOI | MR

[27] V. I. Savrin, E. M. Shablygin, “Priblizhennoe analiticheskoe reshenie kvazipotentsialnogo uravneniya”, TMF, 75:2 (1988), 212–217 | DOI

[28] A. A. Atanasov, A. T. Marinov, “$\hbar$-Razlozhenie dlya svyazannykh sostoyanii, opisyvaemykh relyativistskim trekhmernym dvukhchastichnym kvazipotentsialnym uravneniem”, TMF, 129:1 (2001), 106–115 | DOI | DOI | Zbl

[29] Yu. A. Grishechkin, V. N. Kapshai, “Reshenie uravneniya Logunova–Tavkhelidze dlya trekhmernogo ostsillyatornogo v relyativistskom konfiguratsionnom predstavlenii potentsiala”, Izv. vuzov. Fizika, 61:9 (2018), 83–89 | DOI

[30] G. Palma, U. Raff, “The one-dimensional hydrogen atom revisited”, Canadian J. Phys., 84:9 (2006), 787–800, arXiv: quant-ph/0608038 | DOI

[31] N. V. Mak-Lakhlan, Teoriya i prilozheniya funktsii Mate, IL, M., 1953 | MR

[32] A. Messia, Kvantovaya mekhanika, v. 1, Nauka, M., 1978 | MR

[33] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[34] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR | Zbl

[35] Yu. A. Grishechkin, V. N. Kapshai, “Chislennoe reshenie relyativistskikh zadach o svyazannykh sostoyaniyakh sistem dvukh besspinovykh chastits”, Izv. vuzov. Fizika, 56:4 (2013), 71–78 | DOI