Mots-clés : Sturm–Liouville problem
@article{TMF_2022_211_3_a4,
author = {Yu. A. Grishechkin and V. N. Kapshai},
title = {Approximate analytic solution of {the~Logunov{\textendash}Tavkhelidze} equation for a~one-dimensional oscillator potential in the~ relativistic configuration representation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {455--468},
year = {2022},
volume = {211},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a4/}
}
TY - JOUR AU - Yu. A. Grishechkin AU - V. N. Kapshai TI - Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 455 EP - 468 VL - 211 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a4/ LA - ru ID - TMF_2022_211_3_a4 ER -
%0 Journal Article %A Yu. A. Grishechkin %A V. N. Kapshai %T Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 455-468 %V 211 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a4/ %G ru %F TMF_2022_211_3_a4
Yu. A. Grishechkin; V. N. Kapshai. Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 455-468. http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a4/
[1] A. A. Logunov, A. N. Tavkhelidze, “Quasi-optical approach in quantum field theory”, Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR
[2] V. G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude”, Nucl. Phys. B, 6:2 (1968), 125–148 | DOI
[3] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690
[4] V. N. Kapshai, N. B. Skachkov, “Tochnoe reshenie kovariantnogo dvukhchastichnogo odnovremennogo uravneniya s superpozitsiei kvazipotentsialov odnobozonnogo obmena”, TMF, 53:1 (1982), 32–42 | DOI | MR
[5] V. N. Kapshai, T. A. Alferova, “Analog metoda Frobeniusa dlya resheniya odnorodnykh integralnykh uravnenii kvazipotentsialnogo podkhoda v relyativistskom konfiguratsionnom predstavlenii”, Izv. vuzov. Fizika, 40:7 (1997), 53–61 | DOI
[6] V. N. Kapshai, T. A. Alferova, “Relativistic two-particle one-dimensional scattering problem for superposition of $\delta$-potentials”, J. Phys. A: Math. Gen., 32:28 (1999), 5329–5342 | DOI | MR
[7] V. N. Kapshai, T. A. Alferova, “Odnomernye relyativistskie zadachi o svyazannykh sostoyaniyakh i rasseyanii dlya superpozitsii dvukh $\delta$-potentsialov”, Izv. vuzov. Fizika, 45:1 (2002), 3–10 | DOI
[8] V. N. Kapshai, Yu. A. Grishechkin, “Relyativistskie uravneniya s nekotorymi tochechnymi potentsialami”, Izv. vuzov. Fizika, 52:6 (2009), 9–15 | DOI | MR
[9] V. N. Kapshai, Yu. A. Hryshechkin, “The relativistic equations with a nonlinear delta-potential”, Nonlinear Phenom. Complex Syst., 12:1 (2009), 75–80
[10] V. N. Kapshai, Yu. A. Grishechkin, “Relyativistskaya zadacha o s-sostoyaniyakh rasseyaniya dlya superpozitsii dvukh potentsialov `$\delta$-sfera' ”, PFMT, 2015, no. 2(23), 7–12
[11] V. N. Kapshai, N. B. Skachkov, “Tochnye resheniya kvazipotentsialnykh uravnenii dlya kulonovskogo i lineinogo zapirayuschego potentsialov”, TMF, 55:2 (1983), 236–245 | DOI
[12] E. E. Boos, V. I. Savrin, E. M. Shablygin, “Tochnoe reshenie kvazipotentsialnogo uravneniya metodom konturnogo integrirovaniya”, TMF, 72:2 (1987), 197–203 | DOI
[13] V. N. Kapshai, S. P. Kuleshov, N. B. Skachkov, “Ob odnom klasse tochnykh reshenii kvazipotentsialnykh uravnenii”, TMF, 55:3 (1983), 349–360 | DOI | MR
[14] V. N. Kapshai, “Integral equations of relativistic bound state theory and Sturm–Liouville problem”, Operator Methods in Ordinary and Partial Differential Equations (S. Kovalevsky Symposium, University of Stockholm, Stockholm, June 2000), Operator Theory: Advances and Applications, 132, eds. S. Albeverio, N. Elander, W. Norrie Everitt, P. Kurasov, Birkhäuser, Basel, 2002, 199–206 | MR
[15] V. N. Kapshai, S. I. Fialka, “Resheniya relyativistskikh dvukhchastichnykh uravnenii s proizvolnym orbitalnym momentom”, Izv. vuzov. Fizika, 60:1 (2017), 34–43 | DOI
[16] E. A. Dei, V. N. Kapshai, N. B. Skachkov, “Tochnoe reshenie kvazipotentsialnykh uravnenii obschego vida s khromodinamicheskim vzaimodeistviem”, TMF, 69:1 (1986), 55–68 | DOI | MR
[17] N. M. Atakishiev, R. M. Mir-Kasimov, Sh. M. Nagiev, “Kvazipotentsialnye modeli relyativistskogo ostsillyatora”, TMF, 44:1 (1980), 47–62 | DOI | MR
[18] N. M. Atakishiyev, R. M. Mir-Kasimov, Sh. M. Nagiyev, “A relativistic model of the isotropic oscillator”, Ann. Phys., 42:1 (1985), 25–30 | DOI | MR
[19] Sh. M. Nagiyev, E. I. Jafarov, R. M. Imanov, “The relativistic linear singular oscillator”, J. Phys. A: Math. Gen., 36:28 (2003), 7813–7824, arXiv: math-ph/0302042 | DOI | MR
[20] S. M. Nagiyev, E. I. Jafarov, R. M. Imanov, L. Homorodean, “A relativistic model of the isotropic three-dimensional singular oscillator”, Phys. Lett. A, 334:4 (2005), 260–266, arXiv: math-ph/0411054 | DOI | MR
[21] R. A. Frick, “Model of a relativistic oscillator in a generalized Schrödinger picture”, Ann. Phys., 523:11 (2011), 871–882 | DOI | MR
[22] Sh. M. Nagiyev, A. I. Ahmadov, “Exact solution of the relativistic finite-difference equation for the Coulomb plus a ring-shaped-like potential”, Internat. J. Modern Phys. A, 34:17 (2019), 1950089, 17 pp. | DOI | MR
[23] Sh. M. Nagiev, R. M. Mir-Kasimov, “Relyativistskii lineinyi ostsillyator pod deistviem postoyannoi vneshnei sily. Volnovye funktsii i dinamicheskaya gruppa simmetrii”, TMF, 208:3 (2021), 481–494 | DOI | DOI
[24] E. E. Boos, V. I. Savrin, S. A. Shichanin, “Osobennosti spektra relyativistskoi svyazannoi sistemy v kvazipotentsialnoi yame s barerom”, TMF, 77:2 (1988), 247–252 | DOI
[25] A. O. Gelfond, Ischislenie konechnykh raznostei, Librokom, M., 2012 | MR
[26] V. Sh. Gogokhiya, “Svedenie kvazipotentsialnykh uravnenii k zadacham Shturma–\allowbreakLiuvillya i metod etalonnogo uravneniya”, TMF, 48:1 (1981), 80–88 | DOI | MR
[27] V. I. Savrin, E. M. Shablygin, “Priblizhennoe analiticheskoe reshenie kvazipotentsialnogo uravneniya”, TMF, 75:2 (1988), 212–217 | DOI
[28] A. A. Atanasov, A. T. Marinov, “$\hbar$-Razlozhenie dlya svyazannykh sostoyanii, opisyvaemykh relyativistskim trekhmernym dvukhchastichnym kvazipotentsialnym uravneniem”, TMF, 129:1 (2001), 106–115 | DOI | DOI | Zbl
[29] Yu. A. Grishechkin, V. N. Kapshai, “Reshenie uravneniya Logunova–Tavkhelidze dlya trekhmernogo ostsillyatornogo v relyativistskom konfiguratsionnom predstavlenii potentsiala”, Izv. vuzov. Fizika, 61:9 (2018), 83–89 | DOI
[30] G. Palma, U. Raff, “The one-dimensional hydrogen atom revisited”, Canadian J. Phys., 84:9 (2006), 787–800, arXiv: quant-ph/0608038 | DOI
[31] N. V. Mak-Lakhlan, Teoriya i prilozheniya funktsii Mate, IL, M., 1953 | MR
[32] A. Messia, Kvantovaya mekhanika, v. 1, Nauka, M., 1978 | MR
[33] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR
[34] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR | Zbl
[35] Yu. A. Grishechkin, V. N. Kapshai, “Chislennoe reshenie relyativistskikh zadach o svyazannykh sostoyaniyakh sistem dvukh besspinovykh chastits”, Izv. vuzov. Fizika, 56:4 (2013), 71–78 | DOI