Mots-clés : complex energies.
@article{TMF_2022_211_3_a3,
author = {A. Das and B. G. Sidharth and K. Roberts and S. R. Valluri},
title = {Complex energies and {the~Lambert} $W$ function},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {444--454},
year = {2022},
volume = {211},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a3/}
}
TY - JOUR AU - A. Das AU - B. G. Sidharth AU - K. Roberts AU - S. R. Valluri TI - Complex energies and the Lambert $W$ function JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 444 EP - 454 VL - 211 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a3/ LA - ru ID - TMF_2022_211_3_a3 ER -
A. Das; B. G. Sidharth; K. Roberts; S. R. Valluri. Complex energies and the Lambert $W$ function. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 444-454. http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a3/
[1] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert $W$ function”, Adv. Comput. Math., 5:4 (1996), 329–359 | DOI | MR
[2] S. R. Valluri, D. J. Jeffrey, R. M. Corless, “Some applications of the Lambert $W$ function to physics”, Can. J. Phys., 78:9 (2000), 823–831 | DOI
[3] A. E. Dubinov, I. N. Kitaev, “Generalized Wien's displacement law and Stefan–Boltzmann law for thermal radiation with a nonzero chemical potential”, J. Opt. Technol., 85:6 (2018), 314–316 | DOI
[4] B. G. Sidharth, S. R. Valluri, “Cosmic background radiation”, Internat. J. Theor. Phys., 54:8 (2015), 2792–2797 | DOI
[5] B. G. Sidharth, A. Das, S. R. Valluri, “Fractional conductivity in 2D and 3D crystals”, Eur. Phys. J. Plus, 133:4 (2018), 145, 6 pp. | DOI
[6] S. R. Valluri, M. Gil, D. J. Jeffrey, S. Basu, “The Lambert $W$ function and quantum statistics”, J. Math. Phys., 50:10 (2009), 102103, 11 pp. | DOI | MR
[7] M. Shamis, O. Zeitouni, “The Curie–Weiss model with complex temperature: Phase transitions”, J. Stat. Phys., 172:2 (2018), 569–591, arXiv: 1701.02375 | DOI | MR
[8] M. Fisher, Priroda kriticheskogo sostoyaniya, M., 1968
[9] E. C. G. Sudarshan, C. B. Chiu, V. Gorini, “Decaying states as complex energy eigenvectors in generalized quantum mechanics”, Phys. Rev. D, 18:8 (1978), 2914–2929 | DOI | MR
[10] T. K. Bailey, W. C. Schieve, “Complex energy eigenstates in quantum decay models”, Nuovo Cimento A, 47:2 (1978), 231–250 | DOI | MR
[11] B. G. Sidharth, Ultra high energy fermions, arXiv: 1008.2491
[12] C. M. Bender, S. Boettcher, P. N. Meisinger, “$\mathscr{P\!T}$-symmetric quantum mechanics”, J. Math. Phys., 40:5 (1999), 2201–2229, arXiv: ; C. M. Bender, “Complex extension of quantum mechanics”, Symmetry in Nonlinear Mathematical Physics, Proceedings of the Fifth International Conference. Part 2 (Kyiv, Ukraine, June 23–29, 2003), Proceedings of the Institute of Mathematics of NAS of Ukraine. Mathematics and int Applications, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych, I. A. Yegorchenko, Institute of Mathematics of NAS of Ukraine, Kyiv, 2004, 617–628 quant-ph/9809072 | DOI | MR | MR | Zbl
[13] S. R. Valluri, W. J. Romo, “A study of the angular momentum dependence of the phase shift for finite range and Coulomb potentials”, Nucl. Phys. A, 492:3 (1989), 493–508 ; “A study of the angular momentum dependence of the phase shift for finite range and Coulomb potentials and its possible applications”, 636:4 (1998), 467–484 | DOI | DOI
[14] T. D. Lee, “Some special examples in renormalizable field theory”, Phys. Rev. (2), 95:5 (1954), 1329–1334 | DOI | MR
[15] K. O. Friedrichs, “On the perturbations of continuous spectra”, Commun. Pure Appl. Math., 1:4 (1948), 361–406 | DOI | MR
[16] B. H. Brandsen, C. J. Joachain, Quantum Mechanics, Prentice Hall, New York, 2000
[17] K. Roberts, S. R. Valluri, “Tutorial: The quantum finite square well and the Lambert $W$ function”, Can. J. Phys., 95:2 (2017), 105–110 | DOI
[18] B. G. Sidharth, A. Das, “Comments on the paper ‘The zitterbewegung region’ ”, Internat. J. Modern Phys. A, 32:28–29 (2017), 1750173, 19 pp. | DOI
[19] B. G. Sidharth, A. Das, Internat. J. Modern Phys. A, 32:19–20 (2017), 1750117, 51 pp., arXiv: 1704.00840 | DOI
[20] S.-I. Tomonaga, “Remarks on Bloch's method of sound waves applied to many-fermion problems”, Progr. Theor. Phys., 5:4 (1950), 544–569 | DOI | MR
[21] J. M. Luttinger, “An exactly soluble model of a many-fermion system”, J. Math. Phys., 4:9 (1963), 1154–1162 | DOI | MR
[22] D. C. Mattis, E. H. Lieb, “Exact solution of a many-fermion system and its associated boson field”, J. Math. Phys., 6:2 (1965), 304–312 | DOI | MR
[23] S. Coleman, “Quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev. D, 11:8 (1975), 2088–2097 | DOI
[24] E. Witten, “Non-abelian bosonization in two dimensions”, Commun. Math. Phys., 92:4 (1984), 455–472 | DOI | MR
[25] K. Schönhammer, V. Meden, “Fermion-boson transmutation and comparison of statistical ensembles in one dimension”, Amer. J. Phys., 64:9 (1996), 1168–1176, arXiv: cond-mat/9606018 | DOI | MR
[26] B. G. Sidharth, “Anomalous fermions”, J. Stat. Phys., 95:3–4 (1999), 775–784, arXiv: physics/9905004 | DOI
[27] B. G. Sidharth, The Thermodynamic Universe: Exploring the Limits of Physics, World Sci., Singapore, 2008
[28] V. Laliena, “Effect of angular momentum conservation in the phase transitions of collapsing systems”, Phys. Rev. E, 59:5 (1999), 4786–4794, arXiv: cond-mat/9806241 | DOI
[29] R. Verma, A. N. Bose, “Effect of noncommutativity of space-time on Zitterbewegung”, Eur. Phys. J. Plus, 132:5 (2017), 220, 10 pp. | DOI
[30] L. H. Kauffman, “Noncommutativity and discrete physics”, Phys. D, 120:1–2 (1998), 125–138 | DOI | MR
[31] H. O. Girotti, “Noncommutative quantum mechanics”, Amer. J. Phys., 72:5 (2004), 608–612, arXiv: hep-th/0301237 | DOI | MR
[32] M. Chaichian, M. M. Sheikh-Jabbari, A. Tureanu, “Hydrogen atom spectrum and the Lamb shift in noncommutative QED”, Phys. Rev. Lett., 86:13 (2001), 2716–2719, arXiv: hep-th/0010175 | DOI
[33] B. G. Sidharth, “Noncommutative spacetime, mass generation, and other effects”, Internat. J. Modern Phys. E, 19:1 (2010), 79–90 | DOI
[34] B. G. Sidharth, “Spin and non-commutative geometry”, Chaos Solitons Fractals, 13:6 (2002), 1191–1193 | DOI
[35] B. G. Sidharth, A. Das, “Extra-relativistic effects and the Chandrasekhar limit”, Gravit. Cosmol., 22:3 (2016), 299–304 | DOI | MR
[36] B. G. Sidharth, A. Das, “Space and momentum space noncommutativity: Monopoles”, Chaos Solitons Fractals, 96 (2017), 85–89 | DOI | MR
[37] H. S. Snyder, “Quantized space-time”, Phys. Rev. (2), 71:1 (1947), 38–41 | DOI | MR
[38] A. Das, B. G. Sidharth, “Noncommutativity and relativity”, Z. Naturforsch., 73:9 (2018), 775–780, arXiv: 1707.07553 | DOI
[39] R. V. Monroy, “Bose–Einstein condensation of paired photon-dressed electrons in graphene”, Phys. E, 63 (2014), 134–138 | DOI
[40] O. L. Berman, R. Ya. Kezerashvili, Yu. E. Lozovik, “Bose–Einstein condensation of quasiparticles in graphene”, Nanotechnology, 21:13 (2010), 134019, arXiv: 0908.3039 | DOI
[41] J. Bellissard, A. van Elst, H. Schulz-Baldes, “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35:10 (1994), 5373–5451, arXiv: cond-mat/9411052 | DOI | MR
[42] A. G. Pakes, “Structural properties of generalised Planck distributions”, J. Stat. Distrib. App., 8 (2021), 12, 33 pp. | DOI
[43] R. Jayatilaka, R. Patel, M. Brar, Y. Tang, N. M. Jisrawi, F. Chishtie, J. Drozd, S. R. Valluri, “A mathematical model of COVID-19 transmission”, Mater. Today Proc., 54:1 (2022), 101–112 ; A. Maignan, L. P. Reddy, S. Jeevanandam, P. C. Deshmukh, K. Roberts, N. Jisrawi, S. R. Valluri, “The electronic properties of graphene nanoribbons and the offset logarithm function”, 7–13 | DOI | DOI