Bogoliubov's causal perturbative QED and white noise. Interacting fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 394-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present Bogoliubov's causal perturbative QFT with a single refinement: the creation–annihilation operators at a point, i.e., for a specific momentum, are mathematically interpreted as the Hida operators from the white noise analysis. We leave the rest of the theory completely unchanged. This allows avoiding infrared and ultraviolet divergences in the transition to the adiabatic limit for interacting fields. We present the existence proof for the adiabatic limit for interacting fields in causal QED with Hida operators. This limit exists if and only if the normalization in the Epstein–Glaser splitting of the causal distributions, in the construction of the scattering operator, is “natural,”, which eliminates the arbitrariness in choosing the splitting that makes the theory definite, with its predictive power considerably strengthened. We present the example of a charge–mass relation that can be proved within this theory and is confirmed experimentally.
Keywords: scattering operator, causal perturbative method in QFT, interacting fields, white noise, Hida operators, integral kernel operators, Fock expansion.
@article{TMF_2022_211_3_a2,
     author = {J. Wawrzycki},
     title = {Bogoliubov's causal perturbative {QED} and white noise. {Interacting} fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {394--443},
     year = {2022},
     volume = {211},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a2/}
}
TY  - JOUR
AU  - J. Wawrzycki
TI  - Bogoliubov's causal perturbative QED and white noise. Interacting fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 394
EP  - 443
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a2/
LA  - ru
ID  - TMF_2022_211_3_a2
ER  - 
%0 Journal Article
%A J. Wawrzycki
%T Bogoliubov's causal perturbative QED and white noise. Interacting fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 394-443
%V 211
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a2/
%G ru
%F TMF_2022_211_3_a2
J. Wawrzycki. Bogoliubov's causal perturbative QED and white noise. Interacting fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 394-443. http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a2/

[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR | MR

[2] H. Epstein, V. Glaser, “The role of locality in perturbation theory”, Ann. Inst. H. Poincaré Sect. A, 19:3 (1973), 211–295 | MR

[3] R. F. Streater, A. S. Wightman, PCT, Spin and Statistics, and All That, Benjamin, New York–Amsterdam, 1964 | MR

[4] G. Scharf, Finite Quantum Electrodynamics, Springer, Berlin–Heidelberg, 2014 | MR

[5] N. Obata, “Operator calculus on vector-valued white noise functionals”, J. Funct. Anal., 121:1 (1994), 185–232 | DOI | MR

[6] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | MR | Zbl

[7] J. Wawrzycki, Causal perturbative QED and white noise, arXiv: 2203.05884

[8] M. Dütsch, F. Krahe, G. Scharf, “Interacting fields in finite QED”, Nuovo Cimento A, 103:6 (1990), 871–901 | DOI | MR

[9] M. Dütsch, K. Fredenhagen, “A local (perturbative) construction of observables in gauge theories: The example of QED”, Commun. Math. Phys., 203:1 (1999), 71–105, arXiv: hep-th/9807078 | DOI

[10] J. Wawrzycki, Causal perturbative QED and white noise. The inductive step, arXiv: 2203.06182

[11] L. Schwartz, Théorie des distributions, Hermann, Paris, 1978 | MR

[12] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR

[13] J. Horváth, Topological Vector Spaces and Distributions, v. 1, Dover, Mineola, NY, 2012 | MR | Zbl