Local and nonlocal complex discrete sine-Gordon equation. Solutions and continuum limits
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 375-393
Voir la notice de l'article provenant de la source Math-Net.Ru
We study local and nonlocal complex reductions of a discrete negative-order Ablowitz–Kaup–Newell–Segur equation. For the resulting local and nonlocal complex discrete sine-Gordon equations, we construct solutions of the Cauchy matrix type, including soliton solutions and Jordan-block solutions. The dynamics of $1$-soliton solutions are analyzed and illustrated. Continuum limits of the resulting local and nonlocal complex discrete sine-Gordon equations are discussed.
Keywords:
local and nonlocal complex discrete sine-Gordon equation, dynamics, continuum limit.
Mots-clés : Cauchy matrix solution
Mots-clés : Cauchy matrix solution
@article{TMF_2022_211_3_a1,
author = {Xiao-bo Xiang and Wei Feng and Song-lin Zhao},
title = {Local and nonlocal complex discrete {sine-Gordon} equation. {Solutions} and continuum limits},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {375--393},
publisher = {mathdoc},
volume = {211},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a1/}
}
TY - JOUR AU - Xiao-bo Xiang AU - Wei Feng AU - Song-lin Zhao TI - Local and nonlocal complex discrete sine-Gordon equation. Solutions and continuum limits JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 375 EP - 393 VL - 211 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a1/ LA - ru ID - TMF_2022_211_3_a1 ER -
%0 Journal Article %A Xiao-bo Xiang %A Wei Feng %A Song-lin Zhao %T Local and nonlocal complex discrete sine-Gordon equation. Solutions and continuum limits %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 375-393 %V 211 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a1/ %G ru %F TMF_2022_211_3_a1
Xiao-bo Xiang; Wei Feng; Song-lin Zhao. Local and nonlocal complex discrete sine-Gordon equation. Solutions and continuum limits. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 375-393. http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a1/