A new finite-dimensional Hamiltonian systems with a~mixed Poisson structure for the~KdV equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 361-374
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A Lax pair for the KdV equation is derived by a transformation of the eigenfunction. By a polynomial expansion of the eigenfunction for the resulting Lax pair, finite-dimensional integrable systems can be obtained from the Lax pair. These integrable systems are proved to be the Hamiltonian and are shown to have a new Poisson structure such that the entries of its structure matrix are a mixture of linear and quadratic functions of coordinates. The odd and even functions of the spectral parameter are introduced to build a generating function for conserved integrals. Based on the generating function, the integrability of these Hamiltonian systems is shown.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
polynomial expansion, Poisson structure
Keywords: Hamiltonian system, conserved integrals.
                    
                  
                
                
                Keywords: Hamiltonian system, conserved integrals.
@article{TMF_2022_211_3_a0,
     author = {Dianlou Du and Xue Wang},
     title = {A new finite-dimensional {Hamiltonian} systems with a~mixed {Poisson} structure for {the~KdV} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {361--374},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a0/}
}
                      
                      
                    TY - JOUR AU - Dianlou Du AU - Xue Wang TI - A new finite-dimensional Hamiltonian systems with a~mixed Poisson structure for the~KdV equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 361 EP - 374 VL - 211 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a0/ LA - ru ID - TMF_2022_211_3_a0 ER -
%0 Journal Article %A Dianlou Du %A Xue Wang %T A new finite-dimensional Hamiltonian systems with a~mixed Poisson structure for the~KdV equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 361-374 %V 211 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a0/ %G ru %F TMF_2022_211_3_a0
Dianlou Du; Xue Wang. A new finite-dimensional Hamiltonian systems with a~mixed Poisson structure for the~KdV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 361-374. http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a0/