A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 361-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Lax pair for the KdV equation is derived by a transformation of the eigenfunction. By a polynomial expansion of the eigenfunction for the resulting Lax pair, finite-dimensional integrable systems can be obtained from the Lax pair. These integrable systems are proved to be the Hamiltonian and are shown to have a new Poisson structure such that the entries of its structure matrix are a mixture of linear and quadratic functions of coordinates. The odd and even functions of the spectral parameter are introduced to build a generating function for conserved integrals. Based on the generating function, the integrability of these Hamiltonian systems is shown.
Mots-clés : polynomial expansion, Poisson structure
Keywords: Hamiltonian system, conserved integrals.
@article{TMF_2022_211_3_a0,
     author = {Dianlou Du and Xue Wang},
     title = {A new finite-dimensional {Hamiltonian} systems with a~mixed {Poisson} structure for {the~KdV} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {361--374},
     year = {2022},
     volume = {211},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a0/}
}
TY  - JOUR
AU  - Dianlou Du
AU  - Xue Wang
TI  - A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 361
EP  - 374
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a0/
LA  - ru
ID  - TMF_2022_211_3_a0
ER  - 
%0 Journal Article
%A Dianlou Du
%A Xue Wang
%T A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 361-374
%V 211
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a0/
%G ru
%F TMF_2022_211_3_a0
Dianlou Du; Xue Wang. A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 3, pp. 361-374. http://geodesic.mathdoc.fr/item/TMF_2022_211_3_a0/

[1] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skij, A. R. Its, V. B. Matveev, Algebro-geometrical Approach to Nonlinear Evolution Equations, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1994 | Zbl

[2] F. Gesztesy, H. Holden, Soliton Equation and their Algebro-Geometric Solutions, v. 1, Cambridge Studies in Advanced Mathematics, 79, $(1+1)$-Dimensional Continuous Models, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[3] Y. Kodama, “Some remarks on the rational solutions of the Burgers equation”, Lett. Nuovo Cimento, 32:15 (1981), 401–406 | DOI | MR

[4] D. V. Choodnovsky, G. V. Choodnovsky, “Pole expansions of nonlinear partial differential equations”, Nuovo Cimento B, 40:2 (1997), 339–353 | DOI | MR

[5] F. Calogero, “Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related ‘solvable’ many body problems”, Nuovo Cimento B, 43:2 (1978), 177–241 | DOI | MR

[6] F. Calogero, “Zeros of rational functions and solvable nonlinear evolution equations”, J. Math. Phys., 59:7 (2018), 072701, 7 pp. | DOI | MR

[7] F. Calogero, Zeros of Polynomials and Solvable Nonlinear Evolution Equations, Cambridge Univ. Press, Cambridge, 2018 | DOI | MR

[8] J. F. Van Diejen, “On the zeros of the KdV soliton Baker–Akhiezer function”, Regul. Chaotic Dyn., 4:2 (1999), 103–111 | DOI | MR | Zbl

[9] J. F. Van Diejen, H. Puschmann, “Reflectionless Schrödinger operators, the dynamics of zeros, and the solitonic Sato formula”, Duke Math. J., 104:2 (2000), 269–318 | DOI | MR

[10] P. D. Lax, “Periodic solution of the KdV equation”, Commun. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR

[11] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | DOI | MR | Zbl

[12] H. Flaschka, “Relations between infinite-dimensional and finite-dimensional isospectral equations”, Non-linear Integrable Systems – Classical Theory and Quantum Theory, Proceedings of RIMS Symposium (Kyoto, Japan, 13–16 May, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 219–239 | MR

[13] O. I. Mokhov, “Gamiltonovost evolyutsionnogo potoka na mnozhestve statsionarnykh tochek ego integrala”, UMN, 39:4(238) (1984), 173–174 | DOI | MR | Zbl

[14] M. Antonowicz, S. Rauch-Wojciechowski, “Restricted flows of soliton hierarchies: coupled KdV and Harry Dym case”, J. Phys. A: Math. Gen., 24:21 (1991), 5043–5061 | DOI | MR

[15] M. Antonowicz, S. Rauch-Wojciechowski, “How to construct finite dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials”, J. Math. Phys., 33:6 (1992), 2115–2125 | DOI | MR

[16] A. V. Bolsinov, A. M. Izosimov, D. M. Tsonev, “Finite-dimensional integrable systems: a collection of research problems”, J. Geom. Phys., 115 (2017), 2–15 | DOI | MR

[17] C. W. Cao, X. G. Geng, “Classical integrable systems generated through nonlinearization of eigenvalue problems”, Nonlinear Physics, Proceedings of the International Conference (Shanghai, China, April 24–30, 1989), Research Reports in Physics, eds. C. Gu, Y. Li, G. Tu, Springer, Berlin, 1990, 68–78 | DOI | MR | Zbl

[18] C. Cao, X. Geng, “C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy”, J. Phys. A: Math. Gen., 23:18 (1990), 4117–4125 | DOI | MR

[19] R. Zhou, “The finite-band solution of the Jaulent–Miodek equation”, J. Math. Phys., 38:5 (1997), 2535–2546 | DOI | MR

[20] C. Cao, Y. Wu, X. Geng, “Relation between the Kadomtsev–Petviashvili equation and the confocal involutive system”, J. Math. Phys., 40:8 (1999), 3948–3970 | DOI | MR

[21] Z. Qiao, “A new completely integrable Liouville's system produced by the Kaup–Newell eigenvalue problem”, J. Math. Phys., 34:7 (1993), 3110–3120 | DOI | MR

[22] Z. Zhou, W.-X. Ma, R. Zhou, “Finite-dimensional integrable systems associated with the Davey–Stewartson I equation”, Nonlinearity, 14:4 (2001), 701–717, arXiv: nlin/0103045 | DOI | MR

[23] C. Cao, “A classical integrable system and the involutive representation of solutions of the KdV equation”, Acta Math. Sinica (N. S.), 7:3 (1991), 216–223 | DOI | MR

[24] Syao Yan, Tszya-Yan Khan, “Algebro-geometricheskie resheniya ierarkhii Diraka”, TMF, 193:3 (2017), 563–574 | DOI | DOI

[25] S. I. Alber, “On stationary problems for equations of Korteweg-de Vries type”, Commun. Pure Appl. Math., 34:2 (1981), 259–272 | DOI | MR

[26] V. E. Adler, I. T. Khabibullin, A. B. Shabat, “Kraevaya zadacha dlya uravneniya KdF na poluosi”, TMF, 110:1 (1997), 98–113 | DOI | DOI | MR | Zbl

[27] V. E. Adler, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl

[28] O. I. Bogoyavlenskii, S. P. Novikov, “O svyazi gamiltonovykh formalizmov statsionarnykh i nestatsionarnykh zadach”, Funkts. analiz, 10:1 (1976), 9–13 | DOI | MR | Zbl

[29] V. E. Zakharov, L. D. Faddeev, “Uravnenie Kortevega–de Frisa – vpolne integriruemaya gamiltonova sistema”, Funkts. analiz, 5:4 (1971), 18–27 | DOI | MR | Zbl

[30] G. Tondo, “On the integrability of stationary and restricted flows of the KdV hierarchy”, J. Phys. A: Math. Gen., 28:17 (1995), 5097–5115, arXiv: solv-int/9507004 | DOI | MR

[31] D. Du, C. Cao, “The Lie–Poisson representation of the nonlinearized eigenvalue problem of the Kac–van Moerbeke hierarchy”, Phys. Lett. A, 278:4 (2001), 209–224 | DOI | MR

[32] Sin Tszen, Syan-Tsyuo Gen, “O kvaziperiodicheskikh resheniyakh diskretnoi ierarkhii Chena–Li–Lyu”, TMF, 179:3 (2014), 317–349 | DOI | DOI | MR

[33] C. Cao, “Nonlinearization of the Lax system for AKNS hierarchy”, Sci. China Ser. A, 33:5 (1990), 528–536 | MR

[34] D. Du, X. Yang, “An alternative approach to solve the mixed AKNS equations”, J. Math. Anal. Appl., 414:2 (2014), 850–870 | DOI | MR

[35] V. Bargmann, “On the connection between phase shifts and scattering potential”, Rev. Modern Phys., 21:3 (1949), 488–493 | DOI | MR

[36] Dzh. Lemb, Elementy teorii solitonov, Mir, M., 1984 | MR

[37] S. V. Manakov, “The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev–Petviashvili equation”, Phys. D, 3:1–2 (1981), 420–427 | DOI

[38] A. S. Fokas, M. J. Ablowitz, “On the inverse scattering on the time-dependent Schrödinger equation and the associated Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 69:3 (1983), 211–228 | DOI | MR

[39] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[40] V. A. Arkadev, A. K. Pogrebkov, M. K. Polivanov, “Razlozheniya po kvadratam, simplekticheskie i puassonovy struktury, assotsiirovannye s zadachei Shturma–Liuvillya. I”, TMF, 72:3 (1987), 323–339 | DOI | MR | Zbl

[41] V. A. Arkadev, A. K. Pogrebkov, M. K. Polivanov, “Razlozheniya po kvadratam, simplekticheskie i puassonovy struktury, assotsiirovannye s zadachei Shturma–Liuvillya. II”, TMF, 75:2 (198), 170–186 | DOI | MR | Zbl

[42] V. M. Buchstaber, A. V. Mikhailov, KdV hierarchies and quantum Novikov's equations, arXiv: 2109.06357

[43] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | Zbl

[44] D. Du, X. Geng, “Action-angle variables for the Lie–Poisson Hamiltonian systems associated with Boussinesq equation”, Commun. Nonlinear Sci. Numer. Simul., 30:1–3 (2016), 168–181 | DOI | MR

[45] D. Du, X. Geng, “Symplectic realizations and action-angle coordinates for the Lie–Poisson system of Dirac hierarchy”, Appl. Math. Comput., 244 (2014), 222–234 | DOI | MR