Strip deformation problem in three models of hydrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 306-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of a deformation of a straight strip bounded by an impermeable solid wall and a parallel free boundary. Three models of an incompressible fluid are considered: ideal fluid, classical viscous fluid, and dilute solution of a polymer. The influence of the viscous and relaxation factors on the qualitative pattern of fluid motion is revealed.
Mots-clés : incompressible fluid, aqueous solution of a polymer
Keywords: problem with a free boundary, solution breakdown.
@article{TMF_2022_211_2_a9,
     author = {V. V. Pukhnachov},
     title = {Strip deformation problem in three models of hydrodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {306--318},
     year = {2022},
     volume = {211},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a9/}
}
TY  - JOUR
AU  - V. V. Pukhnachov
TI  - Strip deformation problem in three models of hydrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 306
EP  - 318
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a9/
LA  - ru
ID  - TMF_2022_211_2_a9
ER  - 
%0 Journal Article
%A V. V. Pukhnachov
%T Strip deformation problem in three models of hydrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 306-318
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a9/
%G ru
%F TMF_2022_211_2_a9
V. V. Pukhnachov. Strip deformation problem in three models of hydrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 306-318. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a9/

[1] L. V. Ovsyannikov, “Obschie uravneniya i primery”, Zadacha o neustanovivshemsya dvizhenii zhidkosti so svobodnoi granitsei, Nauka. Sib. otd., Novosibirsk, 1967, 5–75

[2] M. S. Longuet-Higgins, “A class of exact, time-dependent, free-surface flows”, J. Fluid Mech., 55:3 (1972), 529–543 | DOI | MR

[3] V. I. Nalimov, V. V. Pukhnachev, Neustanovivshiesya dvizheniya idealnoi zhidkosti so svobodnoi granitsei, Izd-vo Novosib. gos. un-ta, Novosibirsk, 1975

[4] S. Chandrasekkhar, Ellipsoidalnye figury ravnovesiya, Mir, M., 1973 | Zbl

[5] L. V. Ovsyannikov, “Ob odnom sluchae neustanovivshegosya dvizheniya so svobodnoi granitsei”, Dinamika sploshnoi sredy, Sb. nauchn. tr. Vyp. 12, Institut gidrodinamiki SO RAN, Novosibirsk, 1972, 124–130

[6] O. M. Lavrenteva, “O dvizhenii zhidkogo ellipsoida”, Dokl. AN SSSR, 253:4 (1980), 828–831 | MR | Zbl

[7] L. V. Ovsyannikov, “Ob odnom klasse neustanovivshikhsya dvizhenii neszhimaemoi zhidkosti”, Trudy V Sessii Uchenogo soveta po narodnokhozyaistvennomu ispolzovaniyu vzryva, Ilim, Frunze, 1965, 34–42

[8] O. M. Lavrenteva, “Ob odnom klasse dvizhenii zhidkogo ellipsoida”, PMTF, 25:4 (1984), 148–153 | DOI | MR

[9] V. V. Pukhnachev, “O dvizhenii zhidkogo ellipsa”, Dinamika sploshnoi sredy, Sb. nauchn. tr. Vyp. 33, Institut gidrodinamiki SO RAN, Novosibirsk, 1978, 68–75

[10] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[11] E. N. Zhuravleva, “Chislennoe issledovanie tochnogo resheniya uravnenii Nave–Stoksa, opisyvayuschego dvizhenie so svobodnoi granitsei”, PMTF, 57:3 (2016), 9–15 | DOI | MR

[12] V. V. Pukhnachev, E. N. Zhuravleva, “Viscous flows with flat free boundaries”, Eur. Phys. J. Plus, 135:7 (2020), 554, 12 pp. | DOI

[13] V. V. Pukhnachev, “On a problem of viscous strip deformation with a free boundary”, C. R. Acad. Sci. Paris. Sér. I Math., 328:4 (1999), 357–362 | DOI | MR

[14] V. A. Pavlovskii, “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, Dokl. AN SSSR, 200:4 (1971), 809–812

[15] O. A. Frolovskaya, “Dvizhenie vodnogo rastvora polimera so svobodnoi granitsei”, PMTF, 63:1 (2022), 40–49

[16] A. G. Petrova, V. V. Pukhnachev, “Free boundary problem in a polymer solution model”, Russian J. Math. Phys., 28:1 (2021), 96–103 | DOI | MR