The existence proof for forced oscillations by adding dissipative forces in the example of a spherical pendulum
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 295-305 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a generalization of Whitney's problem of periodic motion of an inverted spherical pendulum in the presence of a horizontal periodic force, in addition assuming that velocity-dependent forces act on the pendulum. A method of the introduction of additional dissipative forces is presented. This method allows us to prove the existence of forced oscillations in the considered problem.
Keywords: forced oscillations, Whitney pendulum, stability, periodic solution
Mots-clés : Lorentz force, friction.
@article{TMF_2022_211_2_a8,
     author = {I. Yu. Polekhin},
     title = {The~existence proof for forced oscillations by adding dissipative forces in the~example of a~spherical pendulum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {295--305},
     year = {2022},
     volume = {211},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a8/}
}
TY  - JOUR
AU  - I. Yu. Polekhin
TI  - The existence proof for forced oscillations by adding dissipative forces in the example of a spherical pendulum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 295
EP  - 305
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a8/
LA  - ru
ID  - TMF_2022_211_2_a8
ER  - 
%0 Journal Article
%A I. Yu. Polekhin
%T The existence proof for forced oscillations by adding dissipative forces in the example of a spherical pendulum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 295-305
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a8/
%G ru
%F TMF_2022_211_2_a8
I. Yu. Polekhin. The existence proof for forced oscillations by adding dissipative forces in the example of a spherical pendulum. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 295-305. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a8/

[1] S. V. Bolotin, V. V. Kozlov, “Variatsionnoe ischislenie v tselom, suschestvovanie traektorii v oblasti s granitsei i zadacha Uitni o perevernutom mayatnike”, Izv. RAN. Ser. matem., 79:5 (2015), 39–46 | DOI | DOI | MR

[2] R. Courant, H. Robbins, What is Mathematics? An Elementary Approach to Ideas and Methods, Oxford Univ. Press, New York, 1996 | MR | Zbl

[3] R. Srzednicki, “On periodic solutions in the Whitney's inverted pendulum problem”, Discrete Contin. Dyn. Syst. Ser. S, 12:7 (2019), 2127–2141 | MR | Zbl

[4] I. Yu. Polekhin, “Primery ispolzovaniya topologicheskikh metodov v zadache o perevernutom mayatnike na podvizhnom osnovanii”, Nelineinaya dinam., 10:4 (2014), 465–472 | DOI | Zbl

[5] I. Polekhin, “Forced oscillations of a massive point on a compact surface with a boundary”, Nonlinear Anal.: Theory Methods Appl., 128 (2015), 100–105 | DOI | MR | Zbl

[6] I. Polekhin, “On forced oscillations in groups of interacting nonlinear systems”, Nonlinear Anal.: Theory Methods Appl., 135 (2016), 120–128 | DOI | MR | Zbl

[7] R. Srzednicki, “Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations”, Nonlinear Anal.: Theory Methods Appl., 22:6 (1994), 707–737 | DOI | MR | Zbl

[8] C. De Coster, P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Mathematics in Science and Engineering, 205, Elsevier, Amsterdam, 2006 | MR | Zbl

[9] I. Yu. Polekhin, “Nekotorye rezultaty o vynuzhdennykh kolebaniyakh v mekhanicheskikh sistemakh”, Trudy MIAN, 310 (2020), 267–279 | DOI | DOI

[10] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2004