Mots-clés : servo-constraint, Bilimovich constraint.
@article{TMF_2022_211_2_a7,
author = {E. A. Mikishanina},
title = {Rolling motion dynamics of a~spherical robot with a~pendulum actuator controlled by {the~Bilimovich} servo-constraint},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {281--294},
year = {2022},
volume = {211},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a7/}
}
TY - JOUR AU - E. A. Mikishanina TI - Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 281 EP - 294 VL - 211 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a7/ LA - ru ID - TMF_2022_211_2_a7 ER -
%0 Journal Article %A E. A. Mikishanina %T Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 281-294 %V 211 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a7/ %G ru %F TMF_2022_211_2_a7
E. A. Mikishanina. Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 281-294. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a7/
[1] A. V. Borisov, A. V. Tsiganov, E. A. Mikishanina, “On inhomogeneous nonholonomic Bilimovich system”, Commun. Nonlinear Sci. Numer. Simul., 94 (2021), 105573, 11 pp. | DOI | MR
[2] A. D. Bilimovich, “Sur les systèmes conservatifs, non holonomes avec des liaisons dépendantes du temps”, Comptes Rendus Acad. Sci. Paris, 156 (1913), 12–18
[3] V. V. Vagner, “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, Vyp. 5, Izd-vo Mosk. un-ta, M., 1941, 301–327 | MR
[4] O. E. Fernandez, A. M. Bloch, D. V. Zenkov, “The geometry and integrability of the Suslov problem”, J. Math. Phys., 55:11 (2014), 112704, 14 pp. | DOI | MR
[5] L. C. García-Naranjo, A. J. Maciejewski, J. C. Marrero, M. Przybylska, “The inhomogeneous Suslov problem”, Phys. Lett. A, 378:32–33 (2014), 2389–2394, arXiv: 1310.3868 | DOI | MR
[6] A. V. Borisov, E. A. Mikishanina, “Two nonholonomic chaotic systems. Part I. On the Suslov problem”, Regul. Chaotic Dyn., 25:3 (2020), 313–322 | DOI | MR
[7] I. A. Bizyaev, I. S. Mamaev, “Dynamics of the nonholonomic Suslov problem under periodic control: unbounded speedup and strange attractors”, J. Phys. A: Math. Theor., 53:18 (2020), 185701, 17 pp. | DOI | MR
[8] A. B. Borisov, I. S. Mamaev, D. V. Treschev, “Kachenie tverdogo tela bez proskalzyvaniya i vercheniya: Kinematika i dinamika”, Nelineinaya dinam., 8:4 (2012), 783–797 | DOI | MR
[9] M. H. Beghin, Étude théorique des compas gyrostatiques Anschutz et Sperry, Thèses de l'entre-deux-guerres, 34, Impr. nationale, Paris, 1922 | MR
[10] P. Appell, Traité de mécanique rationnelle, v. 2, Dynamique des systèmes. Mécanique analytique, Gauthier-Villars, Paris, 1932 | Zbl
[11] A. G. Azizov, “K dinamike sistem, stesnennykh servosvyazyami”, Nauchnye trudy TashGU, 1971, no. 397, 3–9
[12] A. G. Azizov, “Dvizhenie upravlyaemykh mekhanicheskikh sistem s servosvyazyami”, PMM, 54:3 (1990), 366–372 | DOI
[13] V. I. Kirgetov, “O dvizhenii upravlyaemykh mekhanicheskikh sistem s uslovnymi svyazyami (servosvyazyami)”, PMM, 31:3 (1967), 433–446 | DOI | MR
[14] V. V. Kozlov, “Printsipy dinamiki i servosvyazi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1989, no. 5, 59–66 | MR | Zbl
[15] V. V. Kozlov, “Dinamika sistem s servosvyazyami. I”, Nelineinaya dinam., 11:2 (2015), 353–376 | DOI | MR | Zbl
[16] V. V. Kozlov, “Dinamika sistem s servosvyazyami. II”, Nelineinaya dinam., 11:3 (2015), 579–611 | DOI | Zbl
[17] Ya. V. Tatarinov, Uravneniya klassicheskoi mekhaniki v lakonichnykh formakh, Izd-vo Mosk. un-ta, M., 2005
[18] A. V. Borisov, E. A. Mikishanina, “Dynamics of the Chaplygin ball with variable parameters”, Russ. J. Nonlinear Dyn., 16:3 (2020), 453–462 | DOI | MR
[19] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Different models of rolling for a robot ball on a plane as a generalization of the Chaplygin ball problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582 | DOI | MR
[20] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinam., 8:2 (2012), 289–307
[21] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl
[22] S. V. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570 | DOI | MR | Zbl
[23] Yu. L. Karavaev, A. A. Kilin, “The dynamics of a spherical robot of combined type by periodic control actions”, Russ. J. Nonlinear Dyn., 15:4 (2019), 497–504 | DOI | MR
[24] A. A. Kilin, E. N. Pivovarova, T. B. Ivanova, “Spherical robot of combined type: dynamics and control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728 ; “Dynamics-based motion planning for a pendulum-actuated spherical rolling robot”, 23:4 (2018), 372–388 | DOI | MR | DOI | MR