Influence of anisotropic rheology on wave processes in sea ice
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 264-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Burgers model is adapted to the description of viscoelastic rheology of ice and used for the investigation of dispersion and attenuation of waves propagating in a water layer beneath solid columnar ice. Rheological constants describing the ice properties in the horizontal direction are obtained from the experiments with cores of natural columnar sea ice. Energy dissipation in the boundary layer under the ice is regarded as an additional mechanism of wave attenuation. The dependence of the wave attenuation coefficient on the wavelength is investigated. We find that viscous properties of ice are most important for the attenuation of waves with periods less 10 s. Dissipation of wave energy in the boundary layer under the ice dominates as the wave period increases from 10 s to 30 s. Long infragravity waves with periods 20–30 s can propagate over long distances with insignificant attenuation when turbulence in the boundary layer under the ice is small.
Keywords: flexural-gravity waves, ice, energy dissipation, attenuation, viscosity, anelasticity, eddy viscosity.
Mots-clés : turbulence
@article{TMF_2022_211_2_a6,
     author = {A. V. Marchenko},
     title = {Influence of anisotropic rheology on wave processes in sea ice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {264--280},
     year = {2022},
     volume = {211},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a6/}
}
TY  - JOUR
AU  - A. V. Marchenko
TI  - Influence of anisotropic rheology on wave processes in sea ice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 264
EP  - 280
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a6/
LA  - ru
ID  - TMF_2022_211_2_a6
ER  - 
%0 Journal Article
%A A. V. Marchenko
%T Influence of anisotropic rheology on wave processes in sea ice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 264-280
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a6/
%G ru
%F TMF_2022_211_2_a6
A. V. Marchenko. Influence of anisotropic rheology on wave processes in sea ice. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 264-280. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a6/

[1] P. Wadhams, Ice in the Ocean, Gordon and Breach, Amsterdam, 2000

[2] C. O. Collins, W. E. Rogers, A. Marchenko, A. V. Babanin, “In situ measurements of an energetic wave event in the Arctic marginal ice zone”, Geophys. Res. Lett., 42:6 (2015), 1863–1870 | DOI

[3] V. N. Smirnov, Dinamicheskie protsessy v morskikh ldakh, Gidrometeoizdat, SPb., 1996

[4] V. A. Squire, “A fresh look at how ocean waves and sea ice interact”, Phil. Trans. Roy. Soc. A, 376:2129 (2018), 20170342, 13 pp. | DOI

[5] S. Timoshenko, S. Woinovsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959

[6] G. W. Timco, W. F. Weeks, “A review of the engineering properties of sea ice”, Cold Reg. Sci. Tech., 60:2 (2010), 107–129 | DOI

[7] E. M. Schulson, P. Duval, Creep and Fracture of Ice, Cambridge Univ. Press, Cambridge, 2009 | DOI

[8] K. P. Tyshko, N. V. Cherepanov, V. I. Fedotov, Kristallicheskoe stroenie morskogo ledyanogo pokrova, Gidrometeoizdat, SPb., 2000

[9] A. Marchenko, E. Karulin, P. Chistyakov, “Experimental investigation of viscous elastic properties of columnar sea ice”, Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions (Moscow, June 15–18, 2021), POAC21-043, 11 pp., Published online

[10] N. K. Sinha, “Short-term rheology of polycrystalline ice”, J. Glaciology, 21:85 (1978), 457–474 | DOI

[11] D. M. Cole, “On the physical basis for the creep of ice: the high temperature regime”, J. Glaciology, 66:257 (2020), 401–414 | DOI

[12] A. V. Marchenko, E. B. Karulin, P. V. Chistyakov, “Eksperimentalnoe opredelenie neuprugikh kharakteristik morskogo ledyanogo pokrova”, Vesti gazovoi nauki, Nauchno-tekhnicheskii sbornik, No 3(45) “Sovremennye podkhody i perspektivnye tekhnologii v proektakh osvoeniya neftegazovykh mestorozhdenii rossiiskogo shelfa”, eds. M. N. Mansurov, D. A. Onischenko, Gazprom VNIIGAZ, Vidnoe, Moskovskaya obl., 2020, 141–150

[13] E. L. Shenderov, “Prokhozhdenie zvuka cherez transversalno-izotropnuyu plastinu”, Akust. zhurn., 30:1 (1984), 122–129

[14] H. H. G. Jellinek, R. Brill, “Viscoelastic properties of ice”, J. Appl. Phys., 27:10 (1956), 1198–1209 | DOI

[15] K. F. Voitkunskii, Mekhanicheskie svoistva lda, Izd-vo AN SSSR, M., 1960

[16] G. D. Ashton, River and Lake Ice Engineering, Water Resources Publ., Littleton, CO, 1986

[17] G. Kolskii, Volny napryazhenii v tverdykh telakh, IL, M., 1955

[18] M. Caster, “A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic instability”, J. Fluid Mech., 14 (1962), 222–224 | DOI | MR

[19] B. D. Annin, “Transversalno-izotropnaya uprugaya model geomaterialov”, Sib. zhurn. industr. matem., 12:3 (2009), 5–14 | DOI

[20] A. V. Marchenko, E. B. Karulin, P. V.Chistyakov, “Eksperimentalnoe opredelenie uprugikh kharakteristik morskogo ledyanogo pokrova”, Vesti gazovoi nauki, Nauchno-tekhnicheskii sbornik, No 3(45) “Sovremennye podkhody i perspektivnye tekhnologii v proektakh osvoeniya neftegazovykh mestorozhdenii rossiiskogo shelfa”, eds. M. N. Mansurov, D. A. Onischenko, Gazprom VNIIGAZ, Vidnoe, Moskovskaya obl., 2020, 129–140

[21] S. Nanthikesan, S. S. Sunder, “Anisotropic elasticity of polycrystalline ice Ih”, Cold Reg. Sci. Tech., 22:2 (1994), 149–169 | DOI

[22] A. Marchenko, P. Wadhams, C. Collins, J. Rabault, M. Chumakov, “Wave-ice interaction in the North-West Barents Sea”, Appl. Ocean Res., 90 (2019), 101861 | DOI

[23] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1988 | MR | MR | Zbl

[24] A. V. Marchenko, V. V. Gorbatsky, I. D. Turnbull, “Characteristics of under-ice ocean currents measured during wave propagation events in the Barents Sea”, Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions (Trondheim, Norway, 14–18 June, 2015), POAC15-00171, 11 pp., Published online

[25] J. J. Voermans, Q. Liu, A. Marchenko, J. Rabault, K. Filchuk, I. Ryzhov, P. Heil, T. Waseda, T. Nose, T. Kodaira, J. Li, A. V. Babanin, “Wave dispersion and dissipation in landfast ice: comparison of observations against models”, The Cryosphere, 15:12 (2021), 5557–5575 | DOI