Internal solitary waves with trapped cores in multilayer shallow water
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 249-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nonlinear system of equations that in the Boussinesq approximation describes near-bottom and near-surface large-amplitude internal waves propagating under a cover in multilayer stratified shallow water. We obtain smooth steady-state soliton-like solutions of the equations of motion in the form of symmetric and nonsymmetric mode-2 waves adjoining a given constant flow. We show that the construction of a smooth solution in which one of the layers has a finite length (trapped core) can lead to the formation of a singularity. In the class of functions with piecewise smooth first derivatives, a method for constructing solutions with trapped cores is proposed. For multilayer shallow water equations, we give examples of steady-state solutions describing soliton-like structures and flows with trapped cores.
Keywords: multilayer shallow water, internal solitary waves
Mots-clés : Boussinesq approximation.
@article{TMF_2022_211_2_a5,
     author = {V. Yu. Lyapidevskii and A. A. Chesnokov},
     title = {Internal solitary waves with trapped cores in multilayer shallow water},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {249--263},
     year = {2022},
     volume = {211},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a5/}
}
TY  - JOUR
AU  - V. Yu. Lyapidevskii
AU  - A. A. Chesnokov
TI  - Internal solitary waves with trapped cores in multilayer shallow water
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 249
EP  - 263
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a5/
LA  - ru
ID  - TMF_2022_211_2_a5
ER  - 
%0 Journal Article
%A V. Yu. Lyapidevskii
%A A. A. Chesnokov
%T Internal solitary waves with trapped cores in multilayer shallow water
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 249-263
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a5/
%G ru
%F TMF_2022_211_2_a5
V. Yu. Lyapidevskii; A. A. Chesnokov. Internal solitary waves with trapped cores in multilayer shallow water. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 249-263. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a5/

[1] K. R. Helfrich, W. K. Melville, “Long nonlinear internal waves”, Annu. Rev. Fluid Mech., 38:1 (2006), 395–425 | DOI | MR | Zbl

[2] R. Grimshaw, K. Helfrich, A. Scotti, “Large amplitude internal waves in the coastal ocean”, Nonlinear Process. Geophys., 18:5 (2011), 653–665 | DOI

[3] R.-C. Lien, F. Henyey, B. Ma, Y. J. Yang, “Large-amplitude internal solitary waves observed in the northern South China Sea: properties and energetics”, J. Phys. Oceanogr., 44:4 (2014), 1095–1115 | DOI

[4] A. Brandt, K. R. Shipley, “Laboratory experiments on mass transport by large amplitude mode-2 internal solitary waves”, Phys. Fluids, 26:4 (2014), 046601 | DOI

[5] M. Carr, P. A. Davies, R. P. Hoebers, “Experiments on the structure and stability of mode-2 internal solitary-like waves propagating on an offset pycnocline”, Phys. Fluids, 27:4 (2015), 046602 | DOI

[6] V. Maderich, K. T. Jung, K. Terletska, K. O. Kim, “Head-on collision of internal waves with trapped cores”, Nonlinear Processes Geophys., 24:4 (2017), 751–762 | DOI

[7] D. Deepwell, M. Stastna, M. Carr, P. A. Davies, “Wave generation through the interaction of a mode-2 internal solitary wave and a broad, isolated ridge”, Phys. Rev. Fluids, 4:9 (2019), 094802, 22 pp. | DOI

[8] C. Yuan, R. Grimshaw, E. Johnson, “The evolution of second mode internal solitary waves over variable topography”, J. Fluid Mech., 836 (2018), 238–259 | DOI | MR

[9] T. G. Talipova, E. N. Pelinovskii, A. A. Kurkin, O. E. Kurkina, “Modelirovanie dinamiki intensivnykh vnutrennikh voln na shelfe”, Izv. RAN. Fizika atmosfery i okeana, 50:6 (2014), 714–722 | DOI | DOI

[10] W. Choi, R. Camassa, “Fully nonlinear internal waves in a two-fluid system”, J. Fluid Mech., 396:1 (1999), 1–36 | DOI | MR

[11] W. Choi, “Modeling of strongly nonlinear internal gravity waves”, Proceedings of the Fourth International Conference on Hydrodynamics (Yokohama, 7–9 September, 2020), Lecture Notes in Physics, 35, eds. Y. Goda, M. Ikehata, K. Suzuki, 2000, 453–458

[12] R. Barros, W. Choi, P. A. Milewski, “Strongly nonlinear effects on internal solitary waves in three-layer flows”, J. Fluid Mech., 883 (2020), A16, 36 pp. | DOI | MR

[13] N. Gavrilov, V. Liapidevskii, K. Gavrilova, “Large amplitude internal solitary waves over a shelf”, Nat. Hazards Earth Syst. Sci., 11:1 (2011), 17–25 | DOI

[14] A. Chesnokov, V. Liapidevskii, “Hyperbolic model of internal solitary waves in a three-layer stratified fluid”, Eur. Phys. J. Plus, 135:7 (2020), 590, 17 pp., arXiv: 2005.13173 | DOI

[15] V. Yu. Lyapidevskii, M. V. Turbin, F. F. Khrapchenkov, V. F. Kukarin, “Nelineinye vnutrennie volny v mnogosloinoi melkoi vode”, PMTF, 61:1 (2020), 53–62 | DOI | DOI

[16] V. Yu. Lyapidevskii, F. F. Khrapchenkov, A. A. Chesnokov, I. O. Yaroschuk, “Modelirovanie nestatsionarnykh gidrofizicheskikh protsessov na shelfe Yaponskogo morya”, Izv. RAN. MZhG, 57:1 (2022), 57–68 | DOI

[17] K. G. Lamb, “A numerical investigation of solitary internal waves with trapped cores formed via shoaling”, J. Fluid Mech., 451:1 (2002), 109–144 | DOI | MR

[18] M. Carr, S. E. King, D. G. Dritschel, “Instability in internal solitary waves with trapped cores”, Phys. Fluids, 24:1 (2012), 016601, 19 pp. | DOI

[19] D. S. Denisenko, N. I. Makarenko, “Trapped solitary waves over an uneven bottom”, Eur. Phys. J. Plus, 135:8 (2020), 673, 16 pp. | DOI

[20] K. N. Danilova, V. Yu. Lyapidevskii, “Uedinennye volny v dvukhsloinoi melkoi vode”, Vestn. NGU. Ser. matem., mekh., inform., 14:4 (2014), 22–31 | DOI

[21] R. Barros, S. Gavrilyuk, “Dispersive nonlinear waves in two-layer flows with free surface. II: Large amplitude solitary waves embedded into the continuous spectrum”, Stud. Appl. Math., 119:3 (2007), 213–251 | DOI | MR