Keywords: instability, Evans function.
@article{TMF_2022_211_2_a4,
author = {A. T. Il'ichev and V. A. Shargatov},
title = {Stability of an aneurysm in a~membrane tube filled with an~ideal fluid},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {236--248},
year = {2022},
volume = {211},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a4/}
}
TY - JOUR AU - A. T. Il'ichev AU - V. A. Shargatov TI - Stability of an aneurysm in a membrane tube filled with an ideal fluid JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 236 EP - 248 VL - 211 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a4/ LA - ru ID - TMF_2022_211_2_a4 ER -
A. T. Il'ichev; V. A. Shargatov. Stability of an aneurysm in a membrane tube filled with an ideal fluid. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 236-248. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a4/
[1] M. Epstein, C. Jonhston, “On the exact speed and amplitude of solitary waves in fluid-filled elastic tubes”, Proc. Roy. Soc. London Ser. A, 457:2009 (2001), 1195–1213 | DOI | MR
[2] Y. B. Fu, S. P. Pearce, K. K. Liu, “Post-bifurcation analysis of a thin-walled hyperelastic tube under inflation”, Internat. J. Non-Linear Mech., 43:8 (2008), 697–706 | DOI
[3] S. P. Pearce, Y. B. Fu, “Characterisation and stability of localised bulging/necking in inflated membrane tubes”, IMA J. Appl. Math., 75:4 (2010), 581–602 | DOI | MR
[4] A. T. Il'ichev, Y.-B. Fu, “Stability of aneurysm solutions in a fluid-filled elastic membrane tube”, Acta Mech. Sin., 28:4 (2012), 1209–1218 | DOI | MR
[5] Y. B. Fu, A. T. Il'ichev, “Localized standing waves in a hyperelastic membrane tube and their stabilization by a mean flow”, Math. Mech. Solids, 20:10 (2015), 1198–1214 | DOI | MR
[6] A. T. Il'ichev, Y. B. Fu, “Stability of an inflated hyperelastic membrane tube with localized wall thinning”, Internat. J. Engrg. Sci., 80 (2014), 53–61 | DOI | MR
[7] A. T. Il'ichev, V. A. Shargatov, Y. B. Fu, “Characterization and dynamical stability of fully nonlinear strain solitary waves in a fluid-filled hyperelastic membrane tube”, Acta Mech., 231:10 (2020), 4095–4110 | DOI | MR
[8] Y. B. Fu, Y. X. Xie, “Stability of localized bulging in inflated membrane tubes under volume control”, Internat. J. Engrg. Sci., 48:11 (2010), 1242–1252 | DOI | MR
[9] A. T. Ilichev, “Dinamika i spektralnaya ustoichivost solitonopodobnykh struktur v membrannykh trubkakh s zhidkostyu”, UMN, 75:5(455) (2020), 59–100 | DOI | DOI | MR
[10] R. L. Pego, P. Smereka, M. I. Weinstein, “Oscillatory instability of travelling waves for KdV–Burgers equation”, Phys. D, 67:1–3 (1993), 45–65 | DOI | MR
[11] R. W. Ogden, Non-Linear Elastic Deformations, Dover, New York, 1997 | MR
[12] R. W. Ogden, “Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids”, Proc. Roy. Soc. London Ser. A, 326:1567 (1972), 565–584
[13] A. N. Gent, “A new constitutive relation for rubber”, Rubber Chem. Technol., 69:1 (1996), 59–61 | DOI
[14] C. O. Horgan, G. Saccomandi, “A description of arterial wall mechanics using limiting chain extensibility constitutive models”, Biomech. Model. Mechanobiol., 1 (2003), 251–266 | DOI
[15] Y. B. Fu, Y. X. Xie, “Effects of inperfections on localized buldging in inflated membrane tubes”, Phil. Trans. Roy. Soc. London Ser. A, 370:1965 (2012), 1896–1911 | DOI | MR
[16] R. L. Pego, M. I. Weinstein, “Eigenvalues, and instabilities of solitary waves”, Phil. Trans. Roy. Soc. London Ser. A, 340:1656 (1992), 47–94 | DOI | MR
[17] J. C. Alexander, R. Sachs, “Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation”, Nonlinear World, 2:4 (1995), 471–507 | MR
[18] V. V. Vedeneev, A. B. Poroshina, “Ustoichivost uprugoi trubki, soderzhaschei tekuschuyu nenyutonovskuyu zhidkost i imeyuschei lokalno oslablennyi uchastok”, Trudy MIAN, 300 (2018), 42–64 | DOI | DOI | MR
[19] V. V. Vedeneev, “Nonlinear steady states of hyperelastic membrane tudes conveying a viscous non-Newtonian fluid”, J. Fluids Struct., 98 (2020), 103113, 21 pp. | DOI