Quasiharmonic longitudinal wave propagating in a Mindlin–Herrmann rod in a nonlinearly elastic environment
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 216-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the modulation instability of quasiharmonic longitudinal waves propagating in a homogeneous rod immersed in a nonlinearly elastic medium. The dynamic behavior of the rod is determined by the Mindlin–Herrmann theory, which refines the technical theory of rods. The accuracy of the model is ensured by describing the motion of the rod particles in the transverse direction and rejecting the hypothesis that the transverse strains due to the axial extension or contraction are proportional to the longitudinal strain. The system of equations describing the longitudinal vibrations of the rod reduces to a single nonlinear fourth-order equation for the longitudinal displacement of the rod particles. The multiscale method is used to derive the nonlinear Schrödinger equation, which is one of the basic equations of nonlinear wave dynamics. The Lighthill criterion is used to determine the domains of modulation instability. It is shown how the boundaries of these domains move as the parameters characterizing the elastic properties of the rod material and the medium nonlinearity change. The influence of the parameters of the system on the wave packets and the main parameters of envelope solitons (amplitude, speed, width) is analyzed.
Keywords: modulation instability, longitudinal wave, Mindlin–Herrmann model, nonlinearly elastic medium, envelope soliton.
@article{TMF_2022_211_2_a3,
     author = {V. I. Erofeev and A. V. Leontieva},
     title = {Quasiharmonic longitudinal wave propagating in {a~Mindlin{\textendash}Herrmann} rod in a~nonlinearly elastic environment},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {216--235},
     year = {2022},
     volume = {211},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a3/}
}
TY  - JOUR
AU  - V. I. Erofeev
AU  - A. V. Leontieva
TI  - Quasiharmonic longitudinal wave propagating in a Mindlin–Herrmann rod in a nonlinearly elastic environment
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 216
EP  - 235
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a3/
LA  - ru
ID  - TMF_2022_211_2_a3
ER  - 
%0 Journal Article
%A V. I. Erofeev
%A A. V. Leontieva
%T Quasiharmonic longitudinal wave propagating in a Mindlin–Herrmann rod in a nonlinearly elastic environment
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 216-235
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a3/
%G ru
%F TMF_2022_211_2_a3
V. I. Erofeev; A. V. Leontieva. Quasiharmonic longitudinal wave propagating in a Mindlin–Herrmann rod in a nonlinearly elastic environment. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 216-235. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a3/

[1] V. A. Zverev, “Modulyatsionnyi metod izmereniya dispersii ultrazvuka”, Dokl. AN SSSR, 91:4 (1953), 791–794

[2] V. A. Zverev, “Modulyatsionnyi metod izmereniya dispersii ultrazvuka”, Akust. zhurn., 2:2 (1956), 142–145 | DOI

[3] Kh. N. Eibramson, Kh. Dzh. Plass, E. A. Ripperger, “Rasprostranenie voln napryazheniya v sterzhnyakh i balkakh”, Problemy mekhaniki, Vyp. III, IL, M., 1961, 25–90

[4] G. Gary, J. R. Klepaczko, H. Zhao, “Correction de dispersion pour l'analyse des petites déformations aux barre de Hopkinson”, J. Phys IV France, 1:C3 (1991), C3-403–C3-410 | DOI

[5] J. M. Lifshitz, H. Leber, “Data processing in the split Hopkinson pressure bar tests”, Internat. J. Impact Eng., 15:6 (1994), 723–733 | DOI

[6] A. M. Bragov, A. Yu. Konstantinov, M. V. Medvedkina, “Dispersiya voln v razreznykh sterzhnyakh Gopkinsona pri dinamicheskikh ispytaniyakh khrupkikh materialov”, Vestn. NNGU, 2011, no. 6(1), 158–162

[7] E. I. Grigolyuk, I. T. Selezov, Neklassicheskie teorii kolebanii sterzhnei, plastin i obolochek, Itogi nauki i tekhniki. Mekhanika tverdykh deformiruemykh tel, 5, VINITI, M., 1973

[8] I. I. Artobolevskii, Yu. I. Bobrovnitskii, M. D. Genkin, Vvedenie v akusticheskuyu dinamiku mashin, Nauka, M., 1979 | MR

[9] R. D. Mindlin, G. Herrmann, “A one-dimensional theory of compressional waves in an elastic rod”, Proceedings of the First U.S. National Congress of Applied Mechanics (Illinois Institute of Technology, Chicago, IL, June 11–16, 1951), ed. E. Sternberg, ASME, New York, 1952, 187–191; “Erratum”, Proceedings of the Second U.S. National Congress of Applied Mechanics (University of Michigan, Ann Arbor, MI, June 14–18, 1954), ed. P. M. Naghdi American Society of Mechanical Engineers, 1955, 233

[10] R. D. Mindlin, G. Herrmann, “A one-dimensional theory of compressional waves in an elastic rod”, The Collected Papers of Raymond D. Mindlin, v. 1, eds. H. Deresiewicz, M. P. Bieniek, F. L. DiMaggio, Springer, New York, 1989, 243–248

[11] G. Herrmann, “Forced motions of elastic rods”, J. Appl. Mech., 21:3 (1954), 221–224 | DOI

[12] M. A. Biot, “Dynamics of viscoelastic anisotropic media”, Proceedings of Midwestern Conference on Solid Mechanics (Pardue University, Lafayette, IN, September 8–9, 1955), Research Series, 129, 1955, 94–108

[13] J. F. Doyle, Wave Propagation in Structure. An FFT-Based Spectral Analysis Methodology, Springer, New York, 1989 | DOI

[14] A. I. Vesnitskii, Volny v sistemakh s dvizhuschimisya granitsami, Fizmatlit, M., 2001

[15] V. I. Erofeev, V. V. Kazhaev, N. P. Semerikova, Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineinost, Fizmatlit, M., 2002

[16] S. Gapalakrishnan, S. Narendar, Wave Propagation in Nanostructures. Nonlocal Continuum Mechanics Formulations, Springer, Cham, 2013 | DOI | MR

[17] V. N. Kukudzhanov, “Asimptoticheskie resheniya utochnennykh uravnenii uprugikh i uprugo-plasticheskikh voln v sterzhnyakh”, Volny v neuprugikh sredakh, ed. Yu. N. Rabotnov, AN MSSR, Kishinev, 1970, 119–129

[18] V. I. Isaev, “Prodolnyi udar po sterzhnyu na osnove teorii Mindlina–Germana”, Vestn. MIIT, 2005, no. 12, 93–98

[19] V. I. Isaev, “Modelirovanie otklikov mekhanicheskikh sistem”, Mir transporta, 2007, no. 1, 26–30

[20] I. V. Andrianov, J. Awrejcewicz, D. Weichert, “Improved continuous models for discrete media”, Math. Probl. Eng., 2010 (2010), 986242, 35 pp. | DOI

[21] D. R. Mahapatra, S. Gopalakrishnan, “A spectral finite element model for analysis of axial-flexural-shear coupled wave propagation in laminated composite beams”, Compos. Struct., 59:1 (2003), 67–88 | DOI

[22] S. P. Anderson, “Higher-order rod approximation for the propagation of longitudinal stress waves in elastic bars”, J. Sound Vibration, 290:1–2 (2006), 290–308 | DOI | MR

[23] M. Krawczuk, J. Grabowska, M. Palacz, “Longitudinal wave propagation. Part I – Comparison of rod theories”, J. Sound Vibration, 295:3–5 (2006), 461–478 | DOI

[24] U. Güven, “Two mode Mindlin–Herrmann rod solution based on modified couple stress theory”, J. Appl. Math. Mech., 94:12 (2014), 1011–1016 | DOI | MR

[25] C. Gan, Y. Wei, S. Yang, “Longitudinal wave propagation in a rod with variable cross-section”, J. Sound Vibration, 333:2 (2014), 434–445 | DOI

[26] S. Kim, U. Lee, “Effects of delamination on guided waves in a symmetric laminated composite beam”, Math. Probl. Eng., 2014 (2014), 956043, 12 pp. | MR

[27] C. Jin, X. Wang, “Dynamics analysis of functional graded material bars by using novel weak form quadrature element method”, J. Vibroengineering, 16:6 (2014), 2790–2799

[28] V. I. Erofeev, V. V. Kazhaev, N. P. Semerikova, “Primenenie utochnennykh sterzhnevykh modelei dlya opisaniya rasprostraneniya uprugikh voln v sloistykh konstruktsiyakh”, Ezhegodnik RAO. Akustika neodnorodnykh sred, Sbornik trudov seminara nauchnoi shkoly prof. S. A. Rybaka, v. 6, AKIN, 2005, 32–37

[29] N. I. Arkhipova, V. I. Erofeev, N. P. Semerikova, “Opisanie rasprostraneniya uprugikh voln v sloistykh elementakh konstruktsii s pomoschyu utochnennykh sterzhnevykh modelei”, Vestn. NNGU, 2011, no. 4(1), 130–133

[30] V. I. Erofeev, A. I. Potapov, “Nelineinye modeli prodolnykh kolebanii sterzhnei”, Gidroaeromekhanika i teoriya uprugosti, Vsesoyuznyi mezhvuzovskii sbornik. Vyp. 32, DGU, Dnepropetrovsk, 1984, 78–82

[31] V. I. Erofeev, N. V. Klyueva, N. P. Semerikova, “Nelineino-uprugie volny v sterzhne Mindlina–Germana”, Izv. vuzov. PND, 7:4 (1999), 35–47

[32] V. I. Erofeev, N. V. Klyueva, “Solitony i nelineinye periodicheskie volny deformatsii v sterzhnyakh, plastinakh i obolochkakh (obzor)”, Akust. zhurn., 48:6 (2002), 725–740 | DOI

[33] A. V. Porubov, A. M. Samsonov, M. G. Velarde, A. V. Bukhanovsky, “Strain solitary waves in an elastic rod embedded in another elastic external medium with sliding”, Phys. Rev. E, 58:3 (1998), 3854–3864 | DOI | MR

[34] V. I. Erofeev, A. V. Leonteva, “Angarmonicheskie volny v sterzhne Mindlina–Germana, pogruzhennom v nelineino-upruguyu sredu”, PMM, 84:4 (2020), 511–528 | DOI | DOI

[35] E. Reissner, “On postbuckling behavior and imperfection sensitivity of thin elastic plates on a non-linear elastic foundation”, Stud. Appl. Math., 49:1 (1970), 45–57 | DOI

[36] N. M. Ryskin, D. I. Trubetskov, Nelineinye volny, Nauka, M., 2020

[37] V. E. Zakharov, L. A. Ostrovsky, “Modulation instability: the beginning”, Phys. D, 238:5 (2009), 540–548 | DOI | MR

[38] J. Lighthill, Waves in Fluids, Cambridge Univ. Press, Cambridge, 1978 | MR

[39] L. A. Ostrovskii, A. I. Potapov, Vvedenie v teoriyu modulirovannykh voln, Fizmatlit, M., 2003 | MR

[40] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[41] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl

[42] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR

[43] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Izd. dom “Intellekt”, Dolgoprudnyi, 2010