Analytic properties of the Green's function for the equation of internal gravitational waves in a stratified medium with shear flows
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 200-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the problem of constructing the Green's function for the equation for linear internal gravity waves in a finite layer of a stratified medium with background shear flows. We study analytic properties of the Green's function presented as a sum of wave modes (discrete spectrum) and an integral along the cut (continuous spectrum). It is shown that at large times, the contribution from the continuous spectrum of the vertical spectral problem is exponentially small. The convergence of the expansion of the Green's function in wave modes is proved. The asymptotics of the Green's function at large times is shown to be completely determined by the asymptotics of its component wave modes.
Keywords: stratified medium, Green's function, internal gravity waves, buoyancy frequency, shear flow, spectral problem, dispersion dependence.
@article{TMF_2022_211_2_a2,
     author = {V. V. Bulatov},
     title = {Analytic properties of {the~Green's} function for the~equation of internal gravitational waves in a~stratified medium with shear flows},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {200--215},
     year = {2022},
     volume = {211},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a2/}
}
TY  - JOUR
AU  - V. V. Bulatov
TI  - Analytic properties of the Green's function for the equation of internal gravitational waves in a stratified medium with shear flows
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 200
EP  - 215
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a2/
LA  - ru
ID  - TMF_2022_211_2_a2
ER  - 
%0 Journal Article
%A V. V. Bulatov
%T Analytic properties of the Green's function for the equation of internal gravitational waves in a stratified medium with shear flows
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 200-215
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a2/
%G ru
%F TMF_2022_211_2_a2
V. V. Bulatov. Analytic properties of the Green's function for the equation of internal gravitational waves in a stratified medium with shear flows. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 200-215. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a2/

[1] A. L. Fabrikant, Yu. A. Stepanyants, Propagation of Waves in Shear Flows, Series on Nonlinear Science. Series A: Monographs and Treatises, 18, World Sci., Singapore, 1998 | DOI | MR

[2] Yu. Z. Miropolskii, Dinamika vnutrennikh gravitatsionnykh voln v okeane, Gidrometeoizdat, L., 1981 | DOI | MR

[3] J. Pedlosky, Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics, Springer, Berlin, Heildelberg, 2010 | DOI

[4] B. R. Sutherland, Internal Gravity Waves, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR

[5] E. G. Morozov, Oceanic Internal Tides: Observations, Analysis and Modeling. A Global View, Springer, Cham, 2018 | DOI

[6] M. G. Velarde, R. Yu. Tarakanov, A. V. Marchenko (eds.), The Ocean in Motion. Circulation, Waves, Polar Oceanography, Springer, Cham, 2018 | DOI

[7] E. G. Morozov, G. Parrilla-Barrera, M. G. Velarde, A. D. Scherbinin, “The straits of Gibraltar and Kara Gates: a comparison of internal tides”, Oceanologica Acta, 26:3 (2003), 231–241 | DOI

[8] E. G. Morozov, R. Yu. Tarakanov, D. I. Frey, T. A. Demidova, N. I. Makarenko, “Bottom water flows in the tropical fractures of the Northern Mid-Atlantic Ridge”, J. Oceanogr., 74:2 (2018), 147–167 | DOI

[9] D. I. Frey, A. N. Novigatsky, M. D. Kravchishina, E. G. Morozov, “Water structure and currents in the Bear Island Trough in July–August 2017”, Russ. J. Earth Sci., 17 (2017), ES3003, 5 pp. | DOI

[10] E. E. Khimchenko, D. I. Frey, E. G. Morozov, “Tidal internal waves in the Bransfield Strait, Antarctica”, Russ. J. Earth. Sci., 20 (2020), ES2006, 6 pp. | DOI

[11] Dzh. Laitkhil, Volny v zhidkostyakh, Mir, M., 1981 | MR

[12] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | Zbl

[13] V. Vlasenko, N. Stashchuk, K. Hutter, Baroclinic Tides: Theoretical Modeling and Observational Evidence, Cambridge Univ. Press, Cambridge, 2005 | DOI

[14] V. V. Bulatov, Yu. V. Vladimirov, Volny v stratifitsirovannykh sredakh, Nauka, M., 2015

[15] V. V. Bulatov, Novye zadachi matematicheskogo modelirovaniya volnovoi dinamiki stratifitsirovannykh sred, OntoPrint, M., 2021

[16] W. R. Young, P. B. Rhines, C. J. R. Garrett, “Shear-flows dispersion, internal waves and horizontal mixing”, J. Phys. Oceanogr., 12:6 (1982), 515–527 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[17] A. Ya. Basovich, L. Sh. Tsimring, “Internal waves in a horizontally inhomogeneous flow”, J. Fluid Mech., 142 (1984), 233–249 | DOI | MR

[18] D. Broutman, L. Brandt, J. W. Rottman, C. K. Taylor, “A WKB derivation for internal waves generated by a horizontally moving body in a thermocline”, Wave Motion, 105 (2021), 102759, 14 pp. | DOI | MR

[19] P. I. Bouruet-Aubertot, S. A. Thorpe, “Numerical experiments of internal gravity waves an accelerating shear flow”, Dynam. Atmos. Oceans, 29:1 (1999), 41–63 | DOI

[20] D. Broutman, J. Rottman, “A simplified Fourier method for computing the internal wave field generated by an oscillating source in a horizontally moving depth-dependent background”, Phys. Fluids, 16:10 (2004), 3682–3689 | DOI

[21] P. Meunier, S. Dizès, L. Redekopp, G. R. Spedding, “Internal waves generated by a stratified wake: Experiment and theory”, J. Fluid Mech., 846 (2018), 752–788 | DOI

[22] F. Fraternale, L. Domenicale, G. Staffilani, D. Tordella, “Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space”, Phys. Rev., 97:6 (2018), 063102, 16 pp. | DOI

[23] P. N. Svirkunov, M. V. Kalashnik, “Fazovye kartiny dispergiruyuschikh voln ot dvizhuschikhsya lokalizovannykh istochnikov”, UFN, 184:1 (2014), 89–100 | DOI | DOI

[24] A. Alias, R. H. J. Grimshaw, K. R. Khusnutdinova, “Coupled Ostrovsky equations for internal waves in a shear flow”, Phys. Fluids, 26:12 (2014), 126603, 30 pp., arXiv: 1407.0939 | DOI

[25] A. A. Slepyshev, D. I. Vorotnikov, “Generation of vertical fine structure by internal waves in a shear flows”, Open J. Fluid Mech., 9:2 (2019), 140–157 | DOI

[26] C. J. Howland, J. R. Taylor, C. P. Caulfield, “Shear-induces breaking of internal gravity waves”, J. Fluid Mech., 921 (2021), A24, 27 pp. | DOI | MR

[27] V. V. Bulatov, Yu. V. Vladimirov, I. Yu. Vladimirov, “Vnutrennie gravitatsionnye volny ot ostsilliruyuschego istochnika vozmuschenii v okeane”, Izv. RAN. Fizika atmosfery i okeana, 57:3 (2021), 362–373 | DOI | DOI

[28] V. V. Bulatov, Yu. V. Vladimirov, I. Yu. Vladimirov, “Fazovye kharakteristiki polei vnutrennikh gravitatsionnykh voln v okeane so sdvigom skorosti techenii”, Morskoi gidrofiz. zhurn., 37:4 (2021), 473–489 | DOI

[29] V. V. Bulatov, Yu. V. Vladimirov, “Dynamics of internal gravity waves in the ocean with shear flows”, Russ. J. Earth Sci., 20 (2020), ES4004, 11 pp. | DOI

[30] V. V. Bulatov, Yu. V. Vladimirov, “Analytical approximations of dispersion relations for internal gravity waves equation with shear flows”, Symmetry, 12:11 (2020), 1865–1865 | DOI

[31] J. W. Miles, “On the stability of heterogeneous shear flow”, J. Fluid Mech., 10:4 (1961), 495–508 | DOI | MR

[32] M. Hirota, P. J. Morrison, “Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows”, Phys. Lett. A, 380:21 (2016), 1856–1860, arXiv: 1512.00963 | DOI

[33] S. Churilov, “On the stability analysis of sharply stratified shear flows”, Ocean Dynamics, 68:7 (2018), 867–884 | DOI

[34] J. R. Carpenter, N. J. Balmforth, G. A. Lawrence, “Identifying unstable modes in stratified shear layers”, Phys. Fluids, 22:5 (2010), 054104, 13 pp. | DOI

[35] A. A. Gavrileva, Yu. G. Gubarev, M. P. Lebedev, “Teorema Mailsa i pervaya kraevaya zadacha dlya uravneniya Teilora–Goldsteina”, Sib. zhurn. industr. matem., 22:3 (2019), 24–38 | DOI | DOI | MR

[36] A. Naife, Vvedenie v metody vozmuschenii, Mir, M., 1984 | MR | Zbl

[37] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, V 2-kh chastyakh. Ch. I: Osnovnye operatsii analiza. Ch. II: Transtsendentnye funktsii, URSS, M., 2015 | MR | Zbl

[38] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR | MR | Zbl

[39] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR

[40] V. A. Borovikov, Uniform Stationary Phase Method, IEE Electromagnetic Waves Series, 40, IEE, London, 1994 | MR

[41] Yu. A. Kravtsov, Yu. I. Orlov, Caustics, Catastrophes and Wave Fields, Springer Series on Wave Phenomena, 15, Springer, Berlin, 1999 | DOI | MR

[42] N. N. Vorobev, Teoriya ryadov, Lan, M., 2002 | MR