Mots-clés : miscible fluid, quasiperiodic convection
@article{TMF_2022_211_2_a11,
author = {E. B. Soboleva},
title = {Influence of finite-density fluctuations on the~development of {the~Rayleigh{\textendash}Taylor} instability in a~porous medium},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {333--346},
year = {2022},
volume = {211},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a11/}
}
TY - JOUR AU - E. B. Soboleva TI - Influence of finite-density fluctuations on the development of the Rayleigh–Taylor instability in a porous medium JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 333 EP - 346 VL - 211 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a11/ LA - ru ID - TMF_2022_211_2_a11 ER -
%0 Journal Article %A E. B. Soboleva %T Influence of finite-density fluctuations on the development of the Rayleigh–Taylor instability in a porous medium %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 333-346 %V 211 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a11/ %G ru %F TMF_2022_211_2_a11
E. B. Soboleva. Influence of finite-density fluctuations on the development of the Rayleigh–Taylor instability in a porous medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 333-346. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a11/
[1] P. G. Drazin, W. H. Reid, Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1981 | MR
[2] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 9, Statisticheskaya fizika. Chast 2. Teoriya kondensirovannogo sostoyaniya, Fizmatlit, M., 2004 | MR
[3] J. M. Ortiz de Zárate, J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures, Elsevier, New York, 2006 | DOI
[4] C. Zhao, J. Zhao, T. Si, S. Chen, “Influence of thermal fluctuations on nanoscale free-surface flows: A many-body dissipative particle dynamics study”, Phys. Fluids, 33:11 (2021), 112004 | DOI
[5] H. E. Huppert, J. A. Neufeld, “The fluid mechanics of carbon dioxide sequestration”, Annu. Rev. Fluid Mech., 46 (2014), 255–272 | DOI | Zbl
[6] H. Emami-Meybodi, H. Hassanzadeh, C. P. Green, J. Ennis-King, “Convective dissolution of CO$_2$ in saline aquifers: Progress in modeling and experiments”, Internat. J. Greenhouse Gas Control, 40 (2015), 238–266 | DOI
[7] A. Riaz, M. Hesse, H. A. Tchelepi, F. M. Orr, “Onset of convection in a gravitationally unstable diffusive boundary layer in porous media”, J. Fluid Mech., 548 (2006), 87–111 | DOI | MR
[8] S. Rapaka, S. Chen, R. J. Pawar, P. H. Stauffer, D. Zhang, “Non-modal growth of perturbations in density-driven convection in porous media”, J. Fluid Mech., 609 (2008), 285–303 | DOI | MR
[9] M. Bestehorn, A. Firoozabadi, “Effect of fluctuations on the onset of density-driven convection in porous media”, Phys. Fluids, 24:11 (2012), 114102 pp. | DOI
[10] E. B. Soboleva, “Nachalo konvektsii Releya–Teilora v poristoi srede”, Izv. RAN. Ser. MZhG, 2021, no. 2, 52–62 | DOI | DOI
[11] J. Bear, A. Cheng, Modeling Groundwater Flow and Contaminant Transport, Theory and Applications of Transport in Porous Media, 23, Springer, New York, 2010 | DOI
[12] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. VI, Gidrodinamika, Nauka, M., 1988 | MR | MR | Zbl
[13] E. B. Soboleva, “Metod chislennogo issledovaniya dinamiki solenoi vody v pochve”, Matem. modelirovanie, 26:2 (2014), 50–64
[14] E. B. Soboleva, “Metod chislennogo modelirovaniya kontsentratsionno-konvektivnykh techenii v poristykh sredakh v prilozhenii k zadacham geologii”, Zh. vychisl. matem. i matem. fiz., 59:11 (2019), 1961–1972 | DOI | DOI
[15] E. B. Soboleva, G. G. Tsypkin, “Chislennoe modelirovanie konvektivnykh techenii v grunte pri isparenii vody, soderzhaschei rastvorennuyu primes”, Izv. RAN. Ser. MZhG, 2014, no. 5, 81–92 | DOI
[16] E. Soboleva, “Numerical simulation of haline convection in geothermal reservoirs”, J. Phys.: Conf. Ser., 891:1 (2017), 012105, 10 pp. | DOI
[17] E. B. Soboleva, “Density-driven convection in an inhomogeneous geothermal reservoir”, Internat. J. Heat Mass Transfer, 127, Part C (2018), 784–798 | DOI