Influence of finite-density fluctuations on the development of the Rayleigh–Taylor instability in a porous medium
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 333-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We numerically simulate the Rayleigh–Taylor convection in a porous medium in the presence of initial density fluctuations at the interface between two fluid layers. We consider miscible fluids: the lower layer is composed of a single-component fluid medium, and the upper layer, of the same medium with an admixture dissolved in it. We study the influence of the density fluctuation amplitude on the onset and the development of convective motion. We find that as the fluctuation amplitude decreases, the convection begins significantly later, the induced convective “fingers” become wider, and the velocity of their motion decreases. We also observe the effect of initial fluctuations during the transition to stochastic flows when the initial quasiperiodic convection structure is broken.
Keywords: Rayleigh–Taylor convection, porous medium, density fluctuation, transition to stochastic flow.
Mots-clés : miscible fluid, quasiperiodic convection
@article{TMF_2022_211_2_a11,
     author = {E. B. Soboleva},
     title = {Influence of finite-density fluctuations on the~development of {the~Rayleigh{\textendash}Taylor} instability in a~porous medium},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {333--346},
     year = {2022},
     volume = {211},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a11/}
}
TY  - JOUR
AU  - E. B. Soboleva
TI  - Influence of finite-density fluctuations on the development of the Rayleigh–Taylor instability in a porous medium
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 333
EP  - 346
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a11/
LA  - ru
ID  - TMF_2022_211_2_a11
ER  - 
%0 Journal Article
%A E. B. Soboleva
%T Influence of finite-density fluctuations on the development of the Rayleigh–Taylor instability in a porous medium
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 333-346
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a11/
%G ru
%F TMF_2022_211_2_a11
E. B. Soboleva. Influence of finite-density fluctuations on the development of the Rayleigh–Taylor instability in a porous medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 333-346. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a11/

[1] P. G. Drazin, W. H. Reid, Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1981 | MR

[2] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 9, Statisticheskaya fizika. Chast 2. Teoriya kondensirovannogo sostoyaniya, Fizmatlit, M., 2004 | MR

[3] J. M. Ortiz de Zárate, J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures, Elsevier, New York, 2006 | DOI

[4] C. Zhao, J. Zhao, T. Si, S. Chen, “Influence of thermal fluctuations on nanoscale free-surface flows: A many-body dissipative particle dynamics study”, Phys. Fluids, 33:11 (2021), 112004 | DOI

[5] H. E. Huppert, J. A. Neufeld, “The fluid mechanics of carbon dioxide sequestration”, Annu. Rev. Fluid Mech., 46 (2014), 255–272 | DOI | Zbl

[6] H. Emami-Meybodi, H. Hassanzadeh, C. P. Green, J. Ennis-King, “Convective dissolution of CO$_2$ in saline aquifers: Progress in modeling and experiments”, Internat. J. Greenhouse Gas Control, 40 (2015), 238–266 | DOI

[7] A. Riaz, M. Hesse, H. A. Tchelepi, F. M. Orr, “Onset of convection in a gravitationally unstable diffusive boundary layer in porous media”, J. Fluid Mech., 548 (2006), 87–111 | DOI | MR

[8] S. Rapaka, S. Chen, R. J. Pawar, P. H. Stauffer, D. Zhang, “Non-modal growth of perturbations in density-driven convection in porous media”, J. Fluid Mech., 609 (2008), 285–303 | DOI | MR

[9] M. Bestehorn, A. Firoozabadi, “Effect of fluctuations on the onset of density-driven convection in porous media”, Phys. Fluids, 24:11 (2012), 114102 pp. | DOI

[10] E. B. Soboleva, “Nachalo konvektsii Releya–Teilora v poristoi srede”, Izv. RAN. Ser. MZhG, 2021, no. 2, 52–62 | DOI | DOI

[11] J. Bear, A. Cheng, Modeling Groundwater Flow and Contaminant Transport, Theory and Applications of Transport in Porous Media, 23, Springer, New York, 2010 | DOI

[12] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. VI, Gidrodinamika, Nauka, M., 1988 | MR | MR | Zbl

[13] E. B. Soboleva, “Metod chislennogo issledovaniya dinamiki solenoi vody v pochve”, Matem. modelirovanie, 26:2 (2014), 50–64

[14] E. B. Soboleva, “Metod chislennogo modelirovaniya kontsentratsionno-konvektivnykh techenii v poristykh sredakh v prilozhenii k zadacham geologii”, Zh. vychisl. matem. i matem. fiz., 59:11 (2019), 1961–1972 | DOI | DOI

[15] E. B. Soboleva, G. G. Tsypkin, “Chislennoe modelirovanie konvektivnykh techenii v grunte pri isparenii vody, soderzhaschei rastvorennuyu primes”, Izv. RAN. Ser. MZhG, 2014, no. 5, 81–92 | DOI

[16] E. Soboleva, “Numerical simulation of haline convection in geothermal reservoirs”, J. Phys.: Conf. Ser., 891:1 (2017), 012105, 10 pp. | DOI

[17] E. B. Soboleva, “Density-driven convection in an inhomogeneous geothermal reservoir”, Internat. J. Heat Mass Transfer, 127, Part C (2018), 784–798 | DOI