Mots-clés : plasma oscillations, small perturbations
@article{TMF_2022_211_2_a10,
author = {O. S. Rozanova},
title = {Study of small perturbations of a~stationary state in a~model of upper hybrid plasma oscillations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {319--332},
year = {2022},
volume = {211},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a10/}
}
TY - JOUR AU - O. S. Rozanova TI - Study of small perturbations of a stationary state in a model of upper hybrid plasma oscillations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 319 EP - 332 VL - 211 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a10/ LA - ru ID - TMF_2022_211_2_a10 ER -
O. S. Rozanova. Study of small perturbations of a stationary state in a model of upper hybrid plasma oscillations. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 319-332. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a10/
[1] A. F. Aleksandrov, L. S. Bogdankevich, A. A. Rukhadze, Osnovy elektrodinamiki plazmy, Vysshaya shkola, M., 1988 | MR
[2] V. L. Ginzburg, A. A. Rukhadze, Volny v magnitoaktivnoi plazme, Nauka, M., 1975
[3] V. P. Silin, A. A. Rukhadze, Elektromagnitnye svoistva plazmy i plazmopodobnykh sred, URSS, M., 2018
[4] E. V. Chizhonkov, Matematicheskie aspekty modelirovaniya kolebanii i kilvaternykh voln v plazme, Fizmatlit, M., 2018 | Zbl
[5] R. C. Davidson, Methods in Nonlinear Plasma Theory, Acad. Press, New York, 1972
[6] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[7] I. Bakholdin, A. Il'ichev, A. Zharkov, “Steady magnetoacoustic waves and decay of solitonic structures in a finite-beta plasma”, J. Plasma Phys., 67:1 (2002), 1–26 | DOI
[8] E. Esarey, C. B. Schroeder, W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators”, Rev. Modern Phys., 81:3 (2009), 1229–1285 | DOI
[9] R. W. C. Davidson, P. P. J. M. Schram, “Nonlinear oscillations in a cold plasma”, Nucl. Fusion, 8:3 (1968), 183–195 | DOI
[10] M. Karmakar, C. Maity, N. Chakrabarti, “Wave-breaking amplitudes of relativistic upper-hybrid oscillations in a cold magnetized plasma”, Phys. Plasmas, 23:6 (2016), 064503 | DOI
[11] C. Maity, Lagrangian fluid technique to study nonlinear plasma dynamics, PhD Thesis, Saha Institute of Nuclear Physics, Kolkata, India, 2013
[12] C. Maity, N. Chakrabarti, S. Sengupta, “Breaking of upper hybrid oscillations in the presence of an inhomogeneous magnetic field magnetized plasma”, Phys. Rev. E, 86:1 (2012), 016408, 6 pp. | DOI
[13] C. Maity, A. Sarkar, P. K. Shukla, N. Chakrabarti, “Wave-breaking phenomena in a relativistic magnetized plasma”, Phys. Rev. Lett., 110:21 (2013), 215002, 5 pp. | DOI
[14] P. S. Verma, J. K. Soni, S. Segupta, P. K. Kaw, “Nonlinear oscillations in a cold dissipative plasma”, Phys. Plasmas, 17:4 (2010), 044503, 4 pp. | DOI
[15] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, Heidelberg, 2016 | DOI | MR
[16] O. S. Rozanova, E. V. Chizhonkov, The influence of an external magnetic field on cold plasma oscillations, arXiv: 2109.08680
[17] O. S. Rozanova, E. V. Chizhonkov, “On the conditions for the breaking of oscillations in a cold plasma”, Z. Angew. Math. Phys., 72:1 (2021), 13, 15 pp. | DOI | MR
[18] G. Beitmen, A. Eirdeii, Vysshie transtsendentnye funktsii, v. 3, Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR | MR | Zbl