Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 181-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The development of the cryolithozone requires building and numerically implementing mathematical models of multiphysics thermoelastic processes involving with first-order phase transitions and occurring in the foundations of engineering structures and buildings. Numerical implementation of such models is associated with computational difficulties due to various types of heterogeneities in applied problems and the nonlinearity of governing equations, which require very fine grids, increasing computational costs. We develop a numerical method for solving a thermoelasticity problem with phase transitions based on the generalized multiscale finite-element method (GMsFEM). The main idea of the GMsFEM is to construct multiscale basis functions that take the medium heterogeneities into account. The approximation on a fine grid is carried out using the finite-element method with standard linear basis functions. To verify the accuracy of the proposed multiscale method, we solve two- and three-dimensional problems in heterogeneous media. Numerical results show that the multiscale method can provide a good approximation to the solution of the thermoelasticity problem with a phase transition on a fine grid with a significant reduction in the dimensionality of the discrete problem.
Keywords: cryolithozone, heterogeneous medium, mathematical modeling, thermoelasticity, generalized multiscale finite element method.
Mots-clés : phase transition
@article{TMF_2022_211_2_a1,
     author = {D. A. Ammosov and V. I. Vasiliev and M. V. Vasil'eva and S. P. Stepanov},
     title = {Multiscale model reduction for a~thermoelastic model with phase change using a~generalized multiscale finite-element method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {181--199},
     year = {2022},
     volume = {211},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a1/}
}
TY  - JOUR
AU  - D. A. Ammosov
AU  - V. I. Vasiliev
AU  - M. V. Vasil'eva
AU  - S. P. Stepanov
TI  - Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 181
EP  - 199
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a1/
LA  - ru
ID  - TMF_2022_211_2_a1
ER  - 
%0 Journal Article
%A D. A. Ammosov
%A V. I. Vasiliev
%A M. V. Vasil'eva
%A S. P. Stepanov
%T Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 181-199
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a1/
%G ru
%F TMF_2022_211_2_a1
D. A. Ammosov; V. I. Vasiliev; M. V. Vasil'eva; S. P. Stepanov. Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 181-199. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a1/

[1] M. M. Zhou, G. Meschke, “A three-phase thermo-hydro-mechanical finite element model for freezing soils”, Internat. J. Numer. Anal. Methods Geomech., 37:18 (2013), 3173–3193 | DOI

[2] A. H. Sweidan, Y. Heider, B. Markert, “A unified water/ice kinematics approach for phase-field thermo-hydro-mechanical modeling of frost action in porous media”, Comput. Methods Appl. Mech. Engrg., 372 (2020), 113358, 29 pp. | DOI | MR

[3] G. Xu, J. Qi, H. Jin, “Model test study on influence of freezing and thawing on the crude oil pipeline in cold regions”, Cold Reg. Sci. Technol., 64:3 (2010), 262–270 | DOI

[4] Y. Shang, F. Niu, X. Wu, M. Liu, “A novel refrigerant system to reduce refreezing time of cast-in-place pile foundation in permafrost regions”, Appl. Therm. Eng., 128 (2018), 1151–1158 | DOI

[5] J. F. Nixon, “Effect of climatic warming on pile creep in permafrost”, J. Cold Reg. Eng., 4:1 (1990), 67–73 | DOI

[6] A. Foriero, B. Ladanyi, “Finite element simulation of behavior of laterally loaded piles in permafrost”, J. Geotech. Eng., 116:2 (1990), 266–284 | DOI

[7] Y. Kang, Q. Liu, S. Huang, “A fully coupled thermo-hydro-mechanical model for rock mass under freezing/thawing condition”, Cold Reg. Sci. Technol., 95 (2013), 19–26 | DOI

[8] Y. Zhang, Thermal-hydro-mechanical model for freezing and thawing of soils, Ph.D. dissertation, University of Michigan, Michigan, USA, 2014

[9] S. Na, W. Sun, “Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range”, Comput. Methods Appl. Mech. Engrg., 318 (2017), 667–700 | DOI | MR

[10] G. Li, N. Li, Y. Bai, N. Liu, M. He, M. Yang, “A novel simple practical thermal-hydraulic-mechanical (THM) coupling model with water-ice phase change”, Comput. Geotech., 118 (2020), 103357, 17 pp. | DOI

[11] M. Vasilyeva, D. Ammosov, V. Vasil'ev, “Finite element simulation of thermo-mechanical model with phase change”, Computation, 9:1 (2021), 5, 31 pp. | DOI

[12] FLAC3D – Fast Lagrangian Analysis of Continua in 3 Dimensions, Ver. 7.0, User's Guide, Itasca Consulting Group, Minneapolis, MN, 2019

[13] M. Smith, ABAQUS/Standard User's Manual, Ver. 6.9, Dassault Systèmes Simulia Corp., Providence, RI, 2009

[14] D. Arndt, W. Bangerth, B. Blais et al., “The deal.II library, Version 9.2”, J. Numer. Math., 28:3 (2020), 131–146 | DOI | MR

[15] A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential Equations by the Finite Element Method, The FEniCS book, Lecture Notes in Computational Science and Engineering, 84, Springer, Berlin, Heidelberg, 2012 | DOI | MR

[16] R. W. Lewis, B. A. Schrefler, The Finite Element Method in the Static And Dynamic Deformation and Consolidation of Porous Media, Wiley, New York, 1998

[17] P. J. Phillips, M. F. Wheeler, “A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I. The continuous in time case”, Comput. Geosci., 11:2 (2007), 131–144 | DOI | MR

[18] P. N. Vabischevich, M. V. Vasileva, A. E. Kolesov, “Skhema rasschepleniya dlya zadach porouprugosti i termouprugosti”, Zh. vychisl. matem. i matem. fiz., 54:8 (2014), 1345–1355 | DOI | DOI | MR | Zbl

[19] C. T. Kelley, Solving Nonlinear Equations with Newton's Method, SIAM, Philadelphia, PA, 2003 | DOI | MR

[20] A. A. Samarskii, B. D. Moiseenko, “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 816–827 | DOI | MR | Zbl

[21] B. M. Budak, E. N. Soloveva, A. B. Uspenskii, “Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadach Stefana”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 828–840 | DOI | MR | Zbl

[22] K. Morgan, R. W. Lewis, O. C. Zienkiewicz, “An improved algrorithm for heat conduction problems with phase change”, Internat. J. Numer. Methods Eng., 12:7 (1978), 1191–1195 | DOI

[23] B. Nedjar, “An enthalpy-based finite element method for nonlinear heat problems involving phase change”, Comput. Struct., 80:1 (2002), 9–21 | DOI

[24] V. Vasil'ev, M. Vasilyeva, “An accurate approximation of the two-phase Stefan problem with coefficient smoothing”, Mathematics, 8:11 (2020), 1924, 25 pp. | DOI

[25] Y. Efendiev, T. Y. Hou, Multiscale Finite Element Methods. Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences, 4, Springer, New York, 2009 | MR

[26] Y. Efendiev, J. Galvis, T. Y. Hou, “Generalized multiscale finite element methods (GMsFEM)”, J. Comput. Phys., 251 (2013), 116–135, arXiv: 1301.2866 | DOI | MR

[27] F. Otero, S. Oller, X. Martinez, O. Salomón, “Numerical homogenization for composite materials analysis. Comparison with other micro mechanical formulations”, Compos. Struct., 122 (2015), 405–416 | DOI

[28] D. Spiridonov, M. Vasilyeva, W. T. Leung, “A generalized multiscale finite element method (GMsFEM) for perforated domain flows with Robin boundary conditions”, J. Comput. Appl. Math., 357 (2019), 319–328 | DOI | MR

[29] M. Vasilyeva, A. Mistry, P. P. Mukherjee, “Multiscale model reduction for pore-scale simulation of Li-ion batteries using GMsFEM”, J. Comput. Appl. Math., 344 (2018), 73–88 | DOI | MR

[30] J. Galvis, G. Li, K. Shi, “A generalized multiscale finite element method for the Brinkman equation”, J. Comput. Appl. Math., 280 (2015), 294–309 | DOI | MR

[31] D. L. Brown, M. Vasilyeva, “A generalized multiscale finite element method for poroelasticity problems I: Linear problems”, J. Comput. Appl. Math., 294 (2016), 372–388 | DOI | MR

[32] M. Vasilyeva, D. Stalnov, “A generalized multiscale finite element method for thermoelasticity problems”, Proceedings of 6th International Conference on Numerical Analysis and Its Applications (Lozenetz, Bulgaria, June 15–22, 2016), Lecture Notes in Computer Science, 10187, eds. I. Dimov, I. Faragó, L. Vulkov, Springer, Cham, 2017, 713–720 | MR | Zbl

[33] S. Stepanov, M. Vasilyeva, V. I. Vasil'ev, “Generalized multiscale discontinuous Galerkin method for solving the heat problem with phase change”, J. Comput. Appl. Math., 340 (2018), 645–652 | DOI | MR

[34] M. Vasilyeva, S. Stepanov, D. Spiridonov, V. Vasil'ev, “Multiscale finite element method for heat transfer problem during artificial ground freezing”, J. Comput. Appl. Math., 371 (2020), 112605, 11 pp. | DOI | MR

[35] P. V. Sivtsev, P. Smarzewski, S. P. Stepanov, “Numerical study of soil-thawing effect of composite piles using GMsFEM”, J. Compos. Sci., 5:7 (2021), 167, 13 pp. | DOI

[36] R. L. Michalowski, M. Zhu, “Frost heave modelling using porosity rate function”, Internat. J. Numer. Anal. Methods Geomech., 30:8 (2006), 703–722 | DOI

[37] E. T. Chung, Y. Efendiev, W. T. Leung, “Constraint energy minimizing generalized multiscale finite element method”, Comput. Methods Appl. Mech. Eng., 339 (2018), 298–319 | DOI | MR