Keywords: nonlinear partial differential equations, nonlinear wave equations, functional-differential equation with constant and variable delay, solutions with generalized separation of variables.
@article{TMF_2022_211_2_a0,
author = {A. V. Aksenov and A. D. Polyanin},
title = {Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {149--180},
year = {2022},
volume = {211},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a0/}
}
TY - JOUR AU - A. V. Aksenov AU - A. D. Polyanin TI - Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 149 EP - 180 VL - 211 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a0/ LA - ru ID - TMF_2022_211_2_a0 ER -
%0 Journal Article %A A. V. Aksenov %A A. D. Polyanin %T Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 149-180 %V 211 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a0/ %G ru %F TMF_2022_211_2_a0
A. V. Aksenov; A. D. Polyanin. Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 149-180. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a0/
[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[2] G. W. Bluman, J. D. Cole, Similarity Methods for Differential Equations, Applied Mathematical Sciences, 13, Springer, New York, 1974 | MR
[3] CRC Handbook of Lie Group Analysis of Differential Equations, v. 1, Symmetries, Exact Solutions and Conservation Laws, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1994 | MR
[4] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | Zbl
[5] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, A. A. Rodionov, Primenenie teoretiko-gruppovykh metodov v gidrodinamike, Nauka, Novosibirsk, 1994 | DOI
[6] G. W. Bluman, J. D. Cole, “The general similarity solution of the heat equation”, J. Math. Mech., 18:11 (1969), 1025–1042 | MR
[7] D. Levi, P. Winternitz, “Nonclassical symmetry reduction: example of the Boussinesq equation”, J. Phys. A: Math. Gen., 22:15 (1989), 2915–2924 | DOI | MR
[8] M. C. Nucci, P. A. Clarkson, “The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation”, Phys. Lett. A, 164:1 (1992), 49–56 | DOI | MR
[9] R. Cherniha, M. Serov, O. Pliukhin, Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications, CRC Press, Boca Raton, FL, 2018 | MR
[10] P. A. Clarkson, M. D. Kruskal, “New similarity reductions of the Boussinesq equation”, J. Math. Phys., 30:10 (1989), 2201–2213 | DOI | MR
[11] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, CRC Press, Boca Raton, FL, 2012 | MR
[12] A. D. Polyanin, A. I. Zhurov, Metody razdeleniya peremennykh i tochnye resheniya nelineinykh uravnenii matematicheskoi fiziki, IPMekh RAN, M., 2020
[13] V. A. Galaktionov, S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, CRC, Boca Raton, FL, 2007 | MR
[14] A. D. Polyanin, “Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction–diffusion equations with variable coefficients”, Internat. J. Non-Linear Mech., 111 (2019), 95–105 | DOI
[15] A. D. Polyanin, “Functional separation of variables in nonlinear PDEs: General approach, new solutions of diffusion-type equations”, Mathematics, 8:1 (2020), 90, 38 pp. | DOI
[16] A. D. Polyanin, A. I. Zhurov, “Separation of variables in PDEs using nonlinear transformations: Applications to reaction–diffusion type equations”, Appl. Math. Lett., 100 (2020), 106055, 7 pp. | DOI | MR
[17] A. F. Sidorov, V. P. Shapeev, N. N. Yanenko, Metod differentsialnykh svyazei i ego prilozheniya v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR
[18] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl
[19] F. Calogero, A. Degasperis, Spectral Transform and Solitons: Tolls to Solve and Investigate Nonlinear Evolution Equations I, Studies in Mathematics and Its Applications, 13, North-Holland, Amsterdam, 1982 | MR | Zbl
[20] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl
[21] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | MR
[22] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Uch. posobie, Izd. dom “Intellekt”, Dolgoprudnyi, 2010
[23] R. M. Kont, M. Myuzett, Metod Penleve i ego prilozheniya, In-t kompyuter. issled., M.; RKhD, Izhevsk, 2011 | DOI
[24] A. D. Polyanin, V. G. Sorokin, A. I. Zhurov, Differentsialnye uravneniya s zapazdyvaniem: Svoistva, metody, resheniya i modeli, IPMekh RAN, M., 2022
[25] A. V. Aksenov, A. D. Polyanin, “Methods for constructing complex solutions of nonlinear PDEs using simpler solutions”, Mathematics, 9:4 (2021), 345, 30 pp. | DOI
[26] J. Boussinesq, “Recherches théorique sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources”, J. Math. Pures Appl., 10:1 (1904), 5–78 | Zbl
[27] K. G. Guderlei, Teoriya okolozvukovykh techenii, IL, M., 1960 | Zbl
[28] G. I. Barenblatt, Ya. B. Zeldovich, “O reshenii tipa dipolya v zadachakh nestatsionarnoi filtratsii gaza pri politropicheskom rezhime”, PMM, 21:5 (1957), 718–720
[29] G. Shlikhting, Teoriya pogranichnogo sloya, Nauka, M., 1974
[30] Yu. N. Pavlovskii, “Issledovanie nekotorykh invariantnykh reshenii uravnenii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 1:2 (1961), 280–294 | DOI | MR | Zbl
[31] S. S. Titov, “Metod konechnomernykh kolets dlya resheniya nelineinykh uravnenii matematicheskoi fiziki”, Aerodinamika, Mezhvuz. nauchn. sb., ed. T. P. Ivanova, Izd-vo Sarat. un-ta, Saratov, 1988, 104–110
[32] J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, 119, Springer, New York, 1996 | DOI | MR
[33] M. Mei, C.-K. Lin, C.-T. Lin, J. W.-H. So, “Traveling wavefronts for time-delayed reaction-diffusion equation: (I) Local nonlinearity”, J. Differ. Equ., 247:2 (2009), 495–510 | DOI | MR
[34] G. Lv, X. Wang, “Stability of traveling wave solutions to delayed evolution equation”, J. Dyn. Control Syst., 21:2 (2015), 173–187 | DOI | MR
[35] A. D. Polyanin, V. G. Sorokin, “Nonlinear delay reaction–diffusion equations: Traveling-wave solutions in elementary functions”, Appl. Math. Lett., 46 (2015), 38–43 | DOI | MR
[36] S. V. Meleshko, S. Moyo, “On the complete group classification of the reaction–diffusion equation with a delay”, J. Math. Anal. Appl., 338:1 (2008), 448–466 | DOI | MR
[37] A. D. Polyanin, A. I. Zhurov, “Exact separable solutions of delay reaction–diffusion equations and other nonlinear partial functional-differential equations”, Commun. Nonlinear Sci. Numer. Simul., 19:3 (2014), 409–416 | DOI | MR
[38] A. D. Polyanin, A. I. Zhurov, “Functional constraints method for constructing exact solutions to delay reaction–diffusion equations and more complex nonlinear equations”, Commun. Nonlinear Sci. Numer. Simul., 19:3 (2014), 417–430 | DOI | MR
[39] A. D. Polyanin, A. I. Zhurov, “New generalized and functional separable solutions to non-linear delay reaction–diffusion equations”, Internat. J. Non-Linear Mech., 59 (2014), 16–22 | DOI
[40] A. D. Polyanin, A. I. Zhurov, “Nonlinear delay reaction–diffusion equations with varying transfer coefficients: Exact methods and new solutions”, Appl. Math. Lett., 37 (2014), 43–48 | DOI | MR
[41] A. D. Polyanin, A. I. Zhurov, “The functional constraints method: Application to non-linear delay reaction–diffusion equations with varying transfer coefficients”, Internat. J. Non-Linear Mech., 67 (2014), 267–277 | DOI
[42] A. D. Polyanin, V. G. Sorokin, “Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay”, Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 105634, 14 pp. | DOI | MR
[43] A. D. Polyanin, V. G. Sorokin, “A method for constructing exact solutions of nonlinear delay PDEs”, J. Math. Anal. Appl., 494:2 (2021), 124619, 6 pp. | DOI | MR
[44] A. D. Polyanin, A. I. Zhurov, “Generalized and functional separable solutions to non-linear delay Klein–Gordon equations”, Commun. Nonlinear Sci. Numer. Simul., 19:8 (2014), 2676–2689 | DOI
[45] F.-S. Long, S. V. Meleshko, “On the complete group classification of the one-dimensional nonlinear Klein–Gordon equation with a delay”, Math. Methods Appl. Sci., 39:12 (2016), 3255–3270 | DOI | MR
[46] A. D. Polyanin, V. G. Sorokin, “New exact solutions of nonlinear wave type PDEs with delay”, Appl. Math. Lett., 108 (2020), 106512, 6 pp. | DOI | MR
[47] S. Yu. Dobrokhotov, B. Tirotstsi, “Lokalizovannye resheniya odnomernoi nelineinoi sistemy uravnenii melkoi vody so skorostyu $c=\sqrt{x}$ ”, UMN, 65:1(391), 185–186 | DOI | DOI | MR | Zbl
[48] A. V. Aksenov, S. Yu. Dobrokhotov, K. P. Druzhkov, “Tochnye resheniya tipa ‘stupenki’ odnomernykh uravnenii melkoi vody nad naklonnym dnom”, Matem. zametki, 104:6 (2018), 930–936 | DOI | DOI | MR
[49] Yu. A. Chirkunov, S. Yu. Dobrokhotov, S. B. Medvedev, D. S. Minenkov, “Tochnye resheniya odnomernykh nelineinykh uravnenii melkoi vody nad rovnym i naklonnym dnom”, TMF, 178:3 (2014), 322–345 | DOI | DOI | MR | Zbl
[50] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, Nauka, M., 1973
[51] V. A. Dorodnitsyn, “Ob invariantnykh resheniyakh uravneniya nelineinoi teploprovodnosti s istochnikom”, Zh. vychisl. matem. i matem. fiz., 22:6 (1982), 1393–1400 | DOI | MR | Zbl
[52] A. D. Polyanin, V. G. Sorokin, “Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy”, Mathematics, 9:5 (2021), 511, 23 pp. | DOI
[53] A. D. Polyanin, A. I. Zhurov, “The generating equations method: Constructing exact solutions to delay reaction–diffusion systems and other non-linear coupled delay PDEs”, Internat. J. NonLinear Mech., 71 (2015), 104–115 | DOI