Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 149-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a brief review of methods based on the use of simpler solutions for constructing exact solutions of both nonlinear equations of mathematical physics and partial functional-differential equations. These methods are underlain by two general ideas: 1) simple exact solutions of the considered equations can be used to find more complicated solutions of the same equations; 2) exact solutions can be used as a basis for constructing solutions of either more complicated related equations or other classes of equations having similar nonlinear terms. In particular, we show how more complicated exact solutions can be found starting with simple solutions and using the shift and scale transformations; we show that sufficiently complicated solutions can in some cases be obtained by adding terms to simpler solutions; we consider situations where simple solutions of the same type can be used for constructing more complicated compound solutions; we describe the method for constructing exact solutions with several spatial variables starting with solutions of related equations with a single spatial variable. Most of the proposed methods lead to a small amount of intermediate calculations. Their efficiency is illustrated with particular examples. We consider the nonlinear heat conduction equations, reaction–diffusion equations, nonlinear wave equations, hydrodynamic, and gas dynamics equations. We show that some solutions of partial differential equations can be used to construct exact solutions of more complicated equations with delay. We describe the method that allows constructing exact solutions of partial functional-differential equations that have the desired functions with either stretched or contracted arguments.
Mots-clés : exact solutions, reaction–diffusion equations
Keywords: nonlinear partial differential equations, nonlinear wave equations, functional-differential equation with constant and variable delay, solutions with generalized separation of variables.
@article{TMF_2022_211_2_a0,
     author = {A. V. Aksenov and A. D. Polyanin},
     title = {Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {149--180},
     year = {2022},
     volume = {211},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a0/}
}
TY  - JOUR
AU  - A. V. Aksenov
AU  - A. D. Polyanin
TI  - Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 149
EP  - 180
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a0/
LA  - ru
ID  - TMF_2022_211_2_a0
ER  - 
%0 Journal Article
%A A. V. Aksenov
%A A. D. Polyanin
%T Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 149-180
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a0/
%G ru
%F TMF_2022_211_2_a0
A. V. Aksenov; A. D. Polyanin. Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 2, pp. 149-180. http://geodesic.mathdoc.fr/item/TMF_2022_211_2_a0/

[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] G. W. Bluman, J. D. Cole, Similarity Methods for Differential Equations, Applied Mathematical Sciences, 13, Springer, New York, 1974 | MR

[3] CRC Handbook of Lie Group Analysis of Differential Equations, v. 1, Symmetries, Exact Solutions and Conservation Laws, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1994 | MR

[4] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | Zbl

[5] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, A. A. Rodionov, Primenenie teoretiko-gruppovykh metodov v gidrodinamike, Nauka, Novosibirsk, 1994 | DOI

[6] G. W. Bluman, J. D. Cole, “The general similarity solution of the heat equation”, J. Math. Mech., 18:11 (1969), 1025–1042 | MR

[7] D. Levi, P. Winternitz, “Nonclassical symmetry reduction: example of the Boussinesq equation”, J. Phys. A: Math. Gen., 22:15 (1989), 2915–2924 | DOI | MR

[8] M. C. Nucci, P. A. Clarkson, “The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation”, Phys. Lett. A, 164:1 (1992), 49–56 | DOI | MR

[9] R. Cherniha, M. Serov, O. Pliukhin, Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications, CRC Press, Boca Raton, FL, 2018 | MR

[10] P. A. Clarkson, M. D. Kruskal, “New similarity reductions of the Boussinesq equation”, J. Math. Phys., 30:10 (1989), 2201–2213 | DOI | MR

[11] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, CRC Press, Boca Raton, FL, 2012 | MR

[12] A. D. Polyanin, A. I. Zhurov, Metody razdeleniya peremennykh i tochnye resheniya nelineinykh uravnenii matematicheskoi fiziki, IPMekh RAN, M., 2020

[13] V. A. Galaktionov, S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, CRC, Boca Raton, FL, 2007 | MR

[14] A. D. Polyanin, “Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction–diffusion equations with variable coefficients”, Internat. J. Non-Linear Mech., 111 (2019), 95–105 | DOI

[15] A. D. Polyanin, “Functional separation of variables in nonlinear PDEs: General approach, new solutions of diffusion-type equations”, Mathematics, 8:1 (2020), 90, 38 pp. | DOI

[16] A. D. Polyanin, A. I. Zhurov, “Separation of variables in PDEs using nonlinear transformations: Applications to reaction–diffusion type equations”, Appl. Math. Lett., 100 (2020), 106055, 7 pp. | DOI | MR

[17] A. F. Sidorov, V. P. Shapeev, N. N. Yanenko, Metod differentsialnykh svyazei i ego prilozheniya v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR

[18] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[19] F. Calogero, A. Degasperis, Spectral Transform and Solitons: Tolls to Solve and Investigate Nonlinear Evolution Equations I, Studies in Mathematics and Its Applications, 13, North-Holland, Amsterdam, 1982 | MR | Zbl

[20] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl

[21] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | MR

[22] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Uch. posobie, Izd. dom “Intellekt”, Dolgoprudnyi, 2010

[23] R. M. Kont, M. Myuzett, Metod Penleve i ego prilozheniya, In-t kompyuter. issled., M.; RKhD, Izhevsk, 2011 | DOI

[24] A. D. Polyanin, V. G. Sorokin, A. I. Zhurov, Differentsialnye uravneniya s zapazdyvaniem: Svoistva, metody, resheniya i modeli, IPMekh RAN, M., 2022

[25] A. V. Aksenov, A. D. Polyanin, “Methods for constructing complex solutions of nonlinear PDEs using simpler solutions”, Mathematics, 9:4 (2021), 345, 30 pp. | DOI

[26] J. Boussinesq, “Recherches théorique sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources”, J. Math. Pures Appl., 10:1 (1904), 5–78 | Zbl

[27] K. G. Guderlei, Teoriya okolozvukovykh techenii, IL, M., 1960 | Zbl

[28] G. I. Barenblatt, Ya. B. Zeldovich, “O reshenii tipa dipolya v zadachakh nestatsionarnoi filtratsii gaza pri politropicheskom rezhime”, PMM, 21:5 (1957), 718–720

[29] G. Shlikhting, Teoriya pogranichnogo sloya, Nauka, M., 1974

[30] Yu. N. Pavlovskii, “Issledovanie nekotorykh invariantnykh reshenii uravnenii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 1:2 (1961), 280–294 | DOI | MR | Zbl

[31] S. S. Titov, “Metod konechnomernykh kolets dlya resheniya nelineinykh uravnenii matematicheskoi fiziki”, Aerodinamika, Mezhvuz. nauchn. sb., ed. T. P. Ivanova, Izd-vo Sarat. un-ta, Saratov, 1988, 104–110

[32] J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, 119, Springer, New York, 1996 | DOI | MR

[33] M. Mei, C.-K. Lin, C.-T. Lin, J. W.-H. So, “Traveling wavefronts for time-delayed reaction-diffusion equation: (I) Local nonlinearity”, J. Differ. Equ., 247:2 (2009), 495–510 | DOI | MR

[34] G. Lv, X. Wang, “Stability of traveling wave solutions to delayed evolution equation”, J. Dyn. Control Syst., 21:2 (2015), 173–187 | DOI | MR

[35] A. D. Polyanin, V. G. Sorokin, “Nonlinear delay reaction–diffusion equations: Traveling-wave solutions in elementary functions”, Appl. Math. Lett., 46 (2015), 38–43 | DOI | MR

[36] S. V. Meleshko, S. Moyo, “On the complete group classification of the reaction–diffusion equation with a delay”, J. Math. Anal. Appl., 338:1 (2008), 448–466 | DOI | MR

[37] A. D. Polyanin, A. I. Zhurov, “Exact separable solutions of delay reaction–diffusion equations and other nonlinear partial functional-differential equations”, Commun. Nonlinear Sci. Numer. Simul., 19:3 (2014), 409–416 | DOI | MR

[38] A. D. Polyanin, A. I. Zhurov, “Functional constraints method for constructing exact solutions to delay reaction–diffusion equations and more complex nonlinear equations”, Commun. Nonlinear Sci. Numer. Simul., 19:3 (2014), 417–430 | DOI | MR

[39] A. D. Polyanin, A. I. Zhurov, “New generalized and functional separable solutions to non-linear delay reaction–diffusion equations”, Internat. J. Non-Linear Mech., 59 (2014), 16–22 | DOI

[40] A. D. Polyanin, A. I. Zhurov, “Nonlinear delay reaction–diffusion equations with varying transfer coefficients: Exact methods and new solutions”, Appl. Math. Lett., 37 (2014), 43–48 | DOI | MR

[41] A. D. Polyanin, A. I. Zhurov, “The functional constraints method: Application to non-linear delay reaction–diffusion equations with varying transfer coefficients”, Internat. J. Non-Linear Mech., 67 (2014), 267–277 | DOI

[42] A. D. Polyanin, V. G. Sorokin, “Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay”, Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 105634, 14 pp. | DOI | MR

[43] A. D. Polyanin, V. G. Sorokin, “A method for constructing exact solutions of nonlinear delay PDEs”, J. Math. Anal. Appl., 494:2 (2021), 124619, 6 pp. | DOI | MR

[44] A. D. Polyanin, A. I. Zhurov, “Generalized and functional separable solutions to non-linear delay Klein–Gordon equations”, Commun. Nonlinear Sci. Numer. Simul., 19:8 (2014), 2676–2689 | DOI

[45] F.-S. Long, S. V. Meleshko, “On the complete group classification of the one-dimensional nonlinear Klein–Gordon equation with a delay”, Math. Methods Appl. Sci., 39:12 (2016), 3255–3270 | DOI | MR

[46] A. D. Polyanin, V. G. Sorokin, “New exact solutions of nonlinear wave type PDEs with delay”, Appl. Math. Lett., 108 (2020), 106512, 6 pp. | DOI | MR

[47] S. Yu. Dobrokhotov, B. Tirotstsi, “Lokalizovannye resheniya odnomernoi nelineinoi sistemy uravnenii melkoi vody so skorostyu $c=\sqrt{x}$ ”, UMN, 65:1(391), 185–186 | DOI | DOI | MR | Zbl

[48] A. V. Aksenov, S. Yu. Dobrokhotov, K. P. Druzhkov, “Tochnye resheniya tipa ‘stupenki’ odnomernykh uravnenii melkoi vody nad naklonnym dnom”, Matem. zametki, 104:6 (2018), 930–936 | DOI | DOI | MR

[49] Yu. A. Chirkunov, S. Yu. Dobrokhotov, S. B. Medvedev, D. S. Minenkov, “Tochnye resheniya odnomernykh nelineinykh uravnenii melkoi vody nad rovnym i naklonnym dnom”, TMF, 178:3 (2014), 322–345 | DOI | DOI | MR | Zbl

[50] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, Nauka, M., 1973

[51] V. A. Dorodnitsyn, “Ob invariantnykh resheniyakh uravneniya nelineinoi teploprovodnosti s istochnikom”, Zh. vychisl. matem. i matem. fiz., 22:6 (1982), 1393–1400 | DOI | MR | Zbl

[52] A. D. Polyanin, V. G. Sorokin, “Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy”, Mathematics, 9:5 (2021), 511, 23 pp. | DOI

[53] A. D. Polyanin, A. I. Zhurov, “The generating equations method: Constructing exact solutions to delay reaction–diffusion systems and other non-linear coupled delay PDEs”, Internat. J. NonLinear Mech., 71 (2015), 104–115 | DOI