A new class of spherically symmetric gravitational collapse
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 136-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the gravitational collapse of a spherically symmetric perfect fluid distribution of uniformly contracting stars. In a uniformly contracting star, the relative volume element (relative distance in the case of spherical symmetry) between any two neighboring fluid particles is preserved irrespective of the radial coordinate. The physical meaning is that during collapse each small volume element of the fluid distribution preserves its spatial position. This new class of gravitational collapse is analogous to the reverse phenomenon of motion of galaxies during the expansion of the Universe. We discuss the shearing solution of a perfect fluid distribution executing the uniform expansion, which is a scalar and obeys the equation of state $p=p(\rho)$. The field equation is solved in complete generality, such that that the Oppenheimer–Snyder solution with homogeneous density and the Thompson–Whitrow shear-free solution arise as particular cases.
Keywords: spherical symmetry, gravitational collapse, uniformly contracting star, equation of state, perfect fluid distribution.
@article{TMF_2022_211_1_a8,
     author = {R. Kumar and A. Jaiswal},
     title = {A~new class of spherically symmetric gravitational collapse},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {136--146},
     year = {2022},
     volume = {211},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a8/}
}
TY  - JOUR
AU  - R. Kumar
AU  - A. Jaiswal
TI  - A new class of spherically symmetric gravitational collapse
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 136
EP  - 146
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a8/
LA  - ru
ID  - TMF_2022_211_1_a8
ER  - 
%0 Journal Article
%A R. Kumar
%A A. Jaiswal
%T A new class of spherically symmetric gravitational collapse
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 136-146
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a8/
%G ru
%F TMF_2022_211_1_a8
R. Kumar; A. Jaiswal. A new class of spherically symmetric gravitational collapse. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 136-146. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a8/

[1] G. C. McVittie, “Gravitational motions of collapse or of expansion in general relativity”, Ann. Inst. H. Poincaré Sect. A (N. S.), 6:1 (1967), 1–15

[2] A. H. Taub, “Restricted motions of gravitating spheres”, Ann. Inst. H. Poincaré Sect. A (N. S.), 9:2 (1968), 153–178 | MR

[3] M. C. Faulkes, “Non-static fluid spheres in general relativity”, Prog. Theor. Phys., 42:6 (1969), 1139–1142 | DOI | MR

[4] E. N. Glass, B. Mashhoon, “On a spherical star system with a collapsed core”, Astrophys. J., 205:2 (1976), 570–577 | DOI

[5] Dzh. Oppengeimer, G. Snaider, “O bezgranichnom gravitatsionnom szhatii”, Albert Einshtein i teoriya gravitatsii, eds. E. S. Kuranskii, Mir, M., 1979, 353–361 | DOI | MR | Zbl

[6] G. C. McVittie, “The mass-particle in an expanding universe”, Mon. Not. R. Astron. Soc., 93:5 (1933), 325–339 | DOI

[7] B. Nolan, “Sources for McVittie's mass particle in an expanding universe”, J. Math. Phys., 34:1 (1933), 178–185 | DOI | MR

[8] A. Ori, T. Piran, “Naked singularities and other features of self-similar general-relativistic gravitational collapse”, Phys. Rev. D, 42:4 (1990), 1068–1090 | DOI | MR

[9] P. S. Joshi, N. Dadhich, R. Maartens, “Why do naked singularities form in gravitational collapse?”, Phys. Rev. D, 65:10 (2002), 101501, 4 pp., arXiv: gr-qc/0109051 | DOI | MR

[10] W. B. Bonnor, M. C. Faulkes, “Exact solutions for oscillating spheres in general relativity”, Mon. Not. R. Astron. Soc., 137:3 (1967), 239–251 | DOI

[11] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[12] H. Nariai, “A simple model for gravitational collapse with pressure gradient”, Prog. Theor. Phys., 38:1 (1967), 92–106 | DOI

[13] V. Husain, E. A. Martinez, D. Núñez, “Exact solution for scalar field collapse”, Phys. Rev. D, 50:6 (1994), 3783–3786, arXiv: gr-qc/9402021 | DOI | MR

[14] C. B. Collins, J. Wainwright, “Role of shear in general-relativistic cosmological and stellar models”, Phys. Rev. D, 27:6 (1983), 1209–1218 | DOI | MR

[15] E. N. Glass, “Shear-free gravitational collapse”, J. Math. Phys., 20:7 (1979), 1508–1513 | DOI

[16] R. Chan, “Collapse of a radiating star with shear”, Mon. Not. R. Astron. Soc., 288:3 (1997), 589–595 ; “Erratum: Collapse of a radiating star with shear”, 299:3 (1998), 811–811 | DOI | DOI

[17] L. Herrera, N. O. Santos, “Shear-free and homology conditions for self-gravitating dissipative fluids”, Mon. Not. R. Astron. Soc., 343:4 (2003), 1207–1212 | DOI

[18] C. W. Misner, D. H. Sharp, “Relativistic equations for adiabatic, spherically symmetric gravitational collapse”, Phys. Rev. D, 136:28 (1964), B571–B576 | DOI | MR

[19] I. H. Thompson, G. J. Whitrow, “Time-dependent internal solutions for spherically symmetrical bodies in general relativity: I. Adiabatic collapse”, Mon. Not. R. Astron. Soc., 136:2 (1967), 207–217 | DOI

[20] M. Wyman, “Equations of state for radially symmetric distributions of matter”, Phys. Rev. D, 70:5–6 (1946), 396–400 | DOI

[21] B. Mashhoon, M. Hossein Partovi, “On the gravitational motion of a fluid obeying an equation of state”, Ann. Phys., 130:1 (1980), 99–138 | DOI | MR

[22] J. V. Narlikar, An Introduction to Cosmology, Cambridge Univ. Press, Cambridge, 2002 | Zbl

[23] L. Herrera, N. O. Santos, A. Wang, “Shearing expansion-free spherical anisotropic fluid evolution”, Phys.Rev. D, 78:8 (2008), 084026, 10 pp., arXiv: 0810.1083 | DOI

[24] V. A. Skripkin, “Tochechnyi vzryv v idealnoi neszhimaemoi zhidkosti v obschei teorii otnositelnosti”, Dokl. AN SSSR, 135:5 (1960), 1072–1075 | MR | Zbl