Quantum adiabatic theorem with energy gap regularization
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 121-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dynamics of a nonstationary quantum system whose Hamiltonian explicitly depends on time is called adiabatic if a system state that is an eigenstate of the Hamiltonian at the initial instant of time remains close to this eigenstate throughout the evolution. The degree of such closeness depends on the smallness of the parameter that determines the rate of change of the Hamiltonian. It is usually believed that one of the factors playing a decisive role for the stability of the adiabatic dynamics is the structure of the spectrum of the Hamiltonian. As the quantum adiabatic theorem states in its usual formulation, deviations from the adiabatic evolution can be estimated from above by the ratio of the rate of change of the Hamiltonian to the minimum distance between the energy of the state that approximates the adiabatic dynamics and the rest of the spectrum of the Hamiltonian. We analyze this dependence and prove theorems showing that the efficiency of the adiabatic approximation is more influenced by the rate of change of the Hamiltonian eigenvectors than by the dynamics of the spectrum. In a vast majority of physically meaningful cases, it turns out that controlling the dynamics of eigenvectors is sufficient for ensuring the adiabaticity, regardless of the dynamics of the spectrum as such.
Keywords: quantum adiabatic theorem, energy gap, gauge adiabatic potential.
@article{TMF_2022_211_1_a7,
     author = {N. B. Ilyin},
     title = {Quantum adiabatic theorem with energy gap regularization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--135},
     year = {2022},
     volume = {211},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a7/}
}
TY  - JOUR
AU  - N. B. Ilyin
TI  - Quantum adiabatic theorem with energy gap regularization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 121
EP  - 135
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a7/
LA  - ru
ID  - TMF_2022_211_1_a7
ER  - 
%0 Journal Article
%A N. B. Ilyin
%T Quantum adiabatic theorem with energy gap regularization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 121-135
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a7/
%G ru
%F TMF_2022_211_1_a7
N. B. Ilyin. Quantum adiabatic theorem with energy gap regularization. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 121-135. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a7/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 1, Mekhanika, Fizmatlit, M., 2004 ; т. 5, Статистическая физика, 2002; Statistical Physics | MR | MR

[2] M. Born, “Das Adiabatenprinzip in der Quantenmechanik”, Z. Phys., 40:3–4 (1926), 167–192 | DOI

[3] M. Born, V. Fock, “Beweis des adiabatensatzes”, Z. Phys., 51:3-4 (1928), 165–180 | DOI

[4] T. Kato, “On the adiabatic theorem of quantum mechanics”, J. Phys. Soc. Japan, 5:6 (1950), 435–439 | DOI

[5] A. Messiah, Quantum Mechanics, Dover Books on Physics, Dover, Mineola, NY, 2014

[6] J. E. Avron, A. Elgart, “Adiabatic theorem without a gap condition”, Commun. Math. Phys., 203:2 (1999), 445–463, arXiv: math-ph/9805022 | DOI | MR

[7] S. Teufel, “A Note on the adiabatic theorem without gap condition”, Lett. Math. Phys., 58:3 (2001), 261–266 | DOI | MR

[8] O. Lychkovskiy, O. Gamayun, V. Cheianov, “Time scale for adiabaticity breakdown in driven many-body systems and orthogonality catastrophe”, Phys. Rev. Lett., 119:20 (2017), 200401, 6 pp., arXiv: 1611.00663 | DOI | MR

[9] N. Il'in, A. Aristova, O. Lychkovskiy, “Adiabatic theorem for closed quantum systems initialized at finite temperature”, Phys. Rev. A, 104:3 (2021), L030202, 6 pp. | DOI | MR

[10] O. Lychkovskiy, O. Gamayun, V. Cheianov, “Necessary and sufficient condition for quantum adiabaticity in a driven one-dimensional impurity-fluid system”, Phys. Rev. B, 98:2 (2018), 024307, 9 pp., arXiv: 1804.03726 | DOI

[11] R. Schützhold, G. Schaller, “Adiabatic quantum algorithms as quantum phase transitions: First versus second order”, Phys. Rev. A, 74:6 (2006), 060304, 4 pp., arXiv: quant-ph/0608017 | DOI

[12] J. Latorre, R. Orús, “Adiabatic quantum computation and quantum phase transitions”, Phys. Rev. A, 69:6 (2004), 062302, 5 pp., arXiv: quant-ph/0308042 | DOI

[13] J. M. Bowman, “Reduced dimensionality theory of quantum reactive scattering”, J. Phys. Chem., 95:13 (1991), 4960–4968 | DOI

[14] U. Gaubatz, P. Rudecki, S. Schiemann, K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results”, J. Chem. Phys., 92:9 (1990), 5363–5376 | DOI

[15] K. Bergmann, N. V. Vitanov, B. W. Shore, “Perspective: Stimulated Raman adiabatic passage: The status after 25 years”, J. Phys. Chem., 142:17 (2015), 170901, 21 pp. | DOI

[16] J. C. Budich, B. Trauzettel, “From the adiabatic theorem of quantum mechanics to topological states of matter”, Phys. Status Solidi RRL, 7:1–2 (2013), 109–129 | DOI

[17] A. L. Fetter, J. D. Walecka, Quantum Theory of Many-Particle Systems, Dover Books on Physics, Dover, Mineola, NY, 2003 | Zbl

[18] D. J. Thouless, “Quantization of particle transport”, Phys. Rev. B, 27:10 (1983), 6083–6087 | DOI | MR

[19] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, I. Bloch, “A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice”, Nature Phys., 12:4 (2016), 350–354, arXiv: 1507.02225 | DOI

[20] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution, arXiv: quant-ph/0001106

[21] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, “A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem”, Science, 292:5516 (2001), 472–475, arXiv: quant-ph/0104129 | DOI | MR

[22] D. A. Lidar, A. T. Rezakhani, A. Hamma, “Adiabatic approximation with exponential accuracy for many-body systems and quantum computation”, J. Math. Phys., 50:10 (2009), 102106, 26 pp. | DOI | MR

[23] M. Fleischhauer, M. D. Lukin, “Quantum memory for photons: Dark-state polaritons”, Phys. Rev. A, 65:2 (2002), 022314, 12 pp., arXiv: quant-ph/0106066 | DOI

[24] M. Kolodrubetz, D. Sels, P. Mehta, A. Polkovnikov, “Geometry and non-adiabatic response in quantum and classical systems”, Phys. Rep., 697 (2017), 1–87 | DOI | MR

[25] A. N. Kolmogorov, V. S. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR

[26] M. M. Wilde, Quantum Information Theory, Cambridge Univ. Press, New York, 2013 | MR

[27] D. Markham, J. A. Miszczak, Z. Puchała, K. .{Z}yczkowski, “Quantum state discrimination: A geometric approach”, Phys. Rev. A, 77:4 (2008), 042111, 9 pp., arXiv: 0711.4286 | DOI | MR

[28] L. D. Landau, “Zur theorie der energieubertragung. II”, Phys. Z. Sowjetunion, 2 (1932), 46–51 | Zbl

[29] C. Zener, “Non-adiabatic crossing of energy levels”, Proc. R. Soc. London Ser. A, 137:833 (1932), 696–702 | DOI