@article{TMF_2022_211_1_a7,
author = {N. B. Ilyin},
title = {Quantum adiabatic theorem with energy gap regularization},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {121--135},
year = {2022},
volume = {211},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a7/}
}
N. B. Ilyin. Quantum adiabatic theorem with energy gap regularization. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 121-135. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a7/
[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 1, Mekhanika, Fizmatlit, M., 2004 ; т. 5, Статистическая физика, 2002; Statistical Physics | MR | MR
[2] M. Born, “Das Adiabatenprinzip in der Quantenmechanik”, Z. Phys., 40:3–4 (1926), 167–192 | DOI
[3] M. Born, V. Fock, “Beweis des adiabatensatzes”, Z. Phys., 51:3-4 (1928), 165–180 | DOI
[4] T. Kato, “On the adiabatic theorem of quantum mechanics”, J. Phys. Soc. Japan, 5:6 (1950), 435–439 | DOI
[5] A. Messiah, Quantum Mechanics, Dover Books on Physics, Dover, Mineola, NY, 2014
[6] J. E. Avron, A. Elgart, “Adiabatic theorem without a gap condition”, Commun. Math. Phys., 203:2 (1999), 445–463, arXiv: math-ph/9805022 | DOI | MR
[7] S. Teufel, “A Note on the adiabatic theorem without gap condition”, Lett. Math. Phys., 58:3 (2001), 261–266 | DOI | MR
[8] O. Lychkovskiy, O. Gamayun, V. Cheianov, “Time scale for adiabaticity breakdown in driven many-body systems and orthogonality catastrophe”, Phys. Rev. Lett., 119:20 (2017), 200401, 6 pp., arXiv: 1611.00663 | DOI | MR
[9] N. Il'in, A. Aristova, O. Lychkovskiy, “Adiabatic theorem for closed quantum systems initialized at finite temperature”, Phys. Rev. A, 104:3 (2021), L030202, 6 pp. | DOI | MR
[10] O. Lychkovskiy, O. Gamayun, V. Cheianov, “Necessary and sufficient condition for quantum adiabaticity in a driven one-dimensional impurity-fluid system”, Phys. Rev. B, 98:2 (2018), 024307, 9 pp., arXiv: 1804.03726 | DOI
[11] R. Schützhold, G. Schaller, “Adiabatic quantum algorithms as quantum phase transitions: First versus second order”, Phys. Rev. A, 74:6 (2006), 060304, 4 pp., arXiv: quant-ph/0608017 | DOI
[12] J. Latorre, R. Orús, “Adiabatic quantum computation and quantum phase transitions”, Phys. Rev. A, 69:6 (2004), 062302, 5 pp., arXiv: quant-ph/0308042 | DOI
[13] J. M. Bowman, “Reduced dimensionality theory of quantum reactive scattering”, J. Phys. Chem., 95:13 (1991), 4960–4968 | DOI
[14] U. Gaubatz, P. Rudecki, S. Schiemann, K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results”, J. Chem. Phys., 92:9 (1990), 5363–5376 | DOI
[15] K. Bergmann, N. V. Vitanov, B. W. Shore, “Perspective: Stimulated Raman adiabatic passage: The status after 25 years”, J. Phys. Chem., 142:17 (2015), 170901, 21 pp. | DOI
[16] J. C. Budich, B. Trauzettel, “From the adiabatic theorem of quantum mechanics to topological states of matter”, Phys. Status Solidi RRL, 7:1–2 (2013), 109–129 | DOI
[17] A. L. Fetter, J. D. Walecka, Quantum Theory of Many-Particle Systems, Dover Books on Physics, Dover, Mineola, NY, 2003 | Zbl
[18] D. J. Thouless, “Quantization of particle transport”, Phys. Rev. B, 27:10 (1983), 6083–6087 | DOI | MR
[19] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, I. Bloch, “A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice”, Nature Phys., 12:4 (2016), 350–354, arXiv: 1507.02225 | DOI
[20] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution, arXiv: quant-ph/0001106
[21] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, “A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem”, Science, 292:5516 (2001), 472–475, arXiv: quant-ph/0104129 | DOI | MR
[22] D. A. Lidar, A. T. Rezakhani, A. Hamma, “Adiabatic approximation with exponential accuracy for many-body systems and quantum computation”, J. Math. Phys., 50:10 (2009), 102106, 26 pp. | DOI | MR
[23] M. Fleischhauer, M. D. Lukin, “Quantum memory for photons: Dark-state polaritons”, Phys. Rev. A, 65:2 (2002), 022314, 12 pp., arXiv: quant-ph/0106066 | DOI
[24] M. Kolodrubetz, D. Sels, P. Mehta, A. Polkovnikov, “Geometry and non-adiabatic response in quantum and classical systems”, Phys. Rep., 697 (2017), 1–87 | DOI | MR
[25] A. N. Kolmogorov, V. S. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR
[26] M. M. Wilde, Quantum Information Theory, Cambridge Univ. Press, New York, 2013 | MR
[27] D. Markham, J. A. Miszczak, Z. Puchała, K. .{Z}yczkowski, “Quantum state discrimination: A geometric approach”, Phys. Rev. A, 77:4 (2008), 042111, 9 pp., arXiv: 0711.4286 | DOI | MR
[28] L. D. Landau, “Zur theorie der energieubertragung. II”, Phys. Z. Sowjetunion, 2 (1932), 46–51 | Zbl
[29] C. Zener, “Non-adiabatic crossing of energy levels”, Proc. R. Soc. London Ser. A, 137:833 (1932), 696–702 | DOI