Deformed ladder operators for the generalized one- and two-mode squeezed harmonic oscillator in the presence of a minimal length
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 105-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the deformed ladder operators in the presence of a minimal length to study the one- and two-mode squeezed harmonic oscillator. The generalized Hamiltonian of the system is expressed in terms of a deformed $su(1,1)$ algebra. The realizations of this algebra allow us to convert the purely quantum mechanical problem of the model into a differential equation. By means of the Nikiforov–Uvarov method, the energy eigenvalues are obtained and the corresponding wave functions, in the momentum space, are expressed in terms of hypergeometric functions. Our study shows that the domain of existence of the energy levels is extended and this extension is due to the deformation parameter.
Keywords: harmonic oscillator, minimal length, ladder operators, deformed $su(1,1)$ algebra.
@article{TMF_2022_211_1_a6,
     author = {F. A. Dossa and G. Y. H. Avossevou},
     title = {Deformed ladder operators for the~generalized one- and two-mode squeezed harmonic oscillator in the~presence of a minimal length},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {105--120},
     year = {2022},
     volume = {211},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/}
}
TY  - JOUR
AU  - F. A. Dossa
AU  - G. Y. H. Avossevou
TI  - Deformed ladder operators for the generalized one- and two-mode squeezed harmonic oscillator in the presence of a minimal length
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 105
EP  - 120
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/
LA  - ru
ID  - TMF_2022_211_1_a6
ER  - 
%0 Journal Article
%A F. A. Dossa
%A G. Y. H. Avossevou
%T Deformed ladder operators for the generalized one- and two-mode squeezed harmonic oscillator in the presence of a minimal length
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 105-120
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/
%G ru
%F TMF_2022_211_1_a6
F. A. Dossa; G. Y. H. Avossevou. Deformed ladder operators for the generalized one- and two-mode squeezed harmonic oscillator in the presence of a minimal length. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 105-120. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/

[1] A. Kempf, G. Mangano, R. B. Mann, “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52:2 (1995), 1108–1118, arXiv: hep-th/9412167 | DOI | MR

[2] H. Hinrichsen, A. Kempf, “Maximal localization in the presence of minimal uncertainties in positions and in momenta”, J. Math. Phys., 37:5 (1996), 2121–2137, arXiv: hep-th/9510144 | DOI | MR

[3] M. Maggiore, “The algebraic structure of the generalized uncertainty principle”, Phys. Lett. B, 319:1–3 (1993), 83–86, arXiv: hep-th/9309034 | DOI | MR

[4] A. Kempf, G. Mangano, “Minimal length uncertainty relation and ultraviolet regularization”, Phys. Rev. D, 55:12 (1997), 7909–7920, arXiv: hep-th/9612084 | DOI

[5] A. Kempf, “Non-pointlike particles in harmonic oscillators”, J. Phys. A: Math. Gen., 30:6 (1997), 2093–2101, arXiv: hep-th/9604045 | DOI | MR

[6] L. N. Chang, D. M. Minic, N. Okamura, T. Takeuchi, “Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem”, Phys. Rev. D, 65:12 (2002), 125028, 8 pp., arXiv: hep-th/0201017 | DOI | MR

[7] P. Pedram, “New approach to nonperturbative quantum mechanics with minimal length uncertainty”, Phys. Rev. D, 85:2 (2002), 024016, 12 pp., arXiv: 1112.2327 | DOI

[8] I. Dadić, L. Jonke, S. Meljanac, “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. D, 67:8 (2003), 087701, 4 pp., arXiv: hep-th/0210264 | DOI

[9] K. Nouicer, “Pauli–Hamiltonian in the presence of minimal lengths”, J. Math. Phys., 47:12 (2006), 122102, 11 pp. | DOI | MR

[10] T. V. Fityo, I. O. Vakarchuk, V. M. Tkachuk, “One-dimensional Coulomb-like problem in deformed space with minimal length”, J. Phys. A: Math. Gen., 39:9 (2006), 2143–2149, arXiv: quant-ph/0507117 | DOI | MR

[11] P. Pedram, “A note on the one-dimensional hydrogen atom with minimal length uncertainty”, J. Phys. A: Math. Theor., 45:50 (2012), 505304, 11 pp. | DOI | MR

[12] P. Pedram, “One-dimensional hydrogen atom with minimal length uncertainty and maximal momentum”, Europhys. Lett., 101:3 (2013), 30005, 6 pp., arXiv: 1205.0937 | DOI

[13] F. Brau, “Minimal length uncertainty relation and the hydrogen atom”, J. Phys. A: Math. Gen., 32:44 (1999), 7691–7696, arXiv: quant-ph/9905033 | DOI | MR

[14] R. Akhoury, Y.-P. Yao, “Minimal length uncertainty relation and the hydrogen spectrum”, Phys. Lett. B, 572:1–2 (2003), 37–42, arXiv: hep-ph/0302108 | DOI

[15] S. Benczik, L. N. Chang, D. Minic, T. Takeuchi, “Hydrogen-atom spectrum under a minimal-length hypothesis”, Phys. Rev. A, 72:1 (2005), 012104, 4 pp., arXiv: hep-th/0502222 | DOI

[16] M. Betrouche, M. Maamache, J. R. Choi, “Three-dimensional Dirac oscillator with minimal length: Novel phenomena for quantized energy”, Adv. High Energy Phys., 2013 (2013), 383957, 10 pp. | DOI | MR

[17] C. Quesne, V. M. Tkachuk, “Dirac oscillator with nonzero minimal uncertainty in position”, J. Phys. A: Math. Gen., 38:8 (2005), 1747–1765, arXiv: math-ph/0412052 | DOI | MR

[18] P. Pedram, K. Nozari, S. H. Taheri, “The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field”, JHEP, 2011:3 (2011), 093, 11 pp. | DOI | Zbl

[19] P. Pedram, “Exact ultra cold neutrons' energy spectrum in gravitational quantum mechanics”, Eur. Phys. J. C, 73:10 (2013), 2609, 5 pp., arXiv: 1309.7284 | DOI

[20] Kh. Nouicer, “Casimir effect in the presence of minimal lengths”, J. Phys. A: Math. Gen., 38:46 (2005), 10027–10035, arXiv: hep-th/0512027 | DOI | MR

[21] U. Harbach, S. Hossenfelder, “The Casimir effect in the presence of a minimal length”, Phys. Lett. B, 632:2–3 (2005), 379–383 | DOI

[22] A. M. Frassino, O. Panella, “Casimir effect in minimal length theories based on a generalized uncertainty principle”, Phys. Rev. D, 85:4 (2012), 045030, 10 pp., arXiv: 1112.2924 | DOI

[23] P. Pedram, “The minimal length and the Shannon entropic uncertainty relation”, Adv. High Energy Phys., 2016 (2016), 5101389, 8 pp. | DOI

[24] M. Blasone, G. Lambiase, G. G. Luciano, L. Petruzziello, F. Scardigli, “Heuristic derivation of Casimir effect in minimal length theories”, Internat. J. Modern Phys. D, 29:2 (2020), 2050011, 17 pp., arXiv: 1912.00241 | DOI | MR

[25] H. Hassanabadi, E. Maghsoodi, A. N. Ikot, S. Zarrinkamar, “Minimal length Schrödinger equation with harmonic potentialin the presence of a magnetic field”, Adv. High Energy Phys., 2013 (2013), 923686, 6 pp. | DOI | MR

[26] P. Pedram, “A higher order GUP with minimal length uncertainty and maximal momentum”, Phys. Lett. B, 714:2–5 (2012), 317–323, arXiv: 1110.2999 | DOI

[27] K. Nozari, A. Etemadi, “Minimal length, maximal momentum, and Hilbert space representation of quantum mechanics”, Phys. Rev. D, 85:10 (2012), 104029, 12 pp., arXiv: 1205.0158 | DOI

[28] L. M. Lawson, “Minimal and maximal lengths from position-dependent non-commutativity”, J. Phys. A: Math. Theor., 53:11 (2020), 115303, 23 pp., arXiv: 2012.06906 | DOI | MR

[29] F. A. Dossa, “One-dimensional harmonic oscillator problem and its hidden $SU(1,1)$ symmetry in the presence of a minimal length”, Phys. Lett. A, 384:35 (2020), 126891, 8 pp. | DOI | MR

[30] F. A. Dossa, “Thermodynamic properties and algebraic solution of the $N$-dimensional harmonic oscillator with minimal length uncertainty relations”, Phys. Scr., 96:10 (2021), 105703, 10 pp. | DOI

[31] J. A. C. Gallas, “Some matrix elements for Morse oscillators”, Phys. Rev. A, 21:6 (1980), 1829–1834 | DOI

[32] V. S. Vasan, R. J. Cross, “Matrix elements for Morse oscillators”, J. Chem. Phys., 78:6 (1983), 3869–3871 | DOI

[33] M. S. Swanson, “Transition elements for a non-Hermitian quadratic Hamiltonian”, J. Math. Phys., 45:2 (2004), 585–601 | DOI | MR

[34] E. T. Jaynes, F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proc. IEEE, 51:1 (1963), 89–109 | DOI

[35] Y.-Z. Zhang, “Solving the two-mode squeezed harmonic oscillator and the $k$th-order harmonic generation in Bargmann–Hilbert spaces”, J. Phys. A: Math. Theor., 46:45 (2013), 455302, 13 pp. | DOI | MR

[36] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | DOI | MR | MR | Zbl

[37] F. A. Dossa, G. Y. H. Avossevou, “Relativistic dynamics for a particle carrying a non-Abelian charge in a non-Abelian background electromagnetic field”, J. Math. Phys., 61:2 (2020), 022302, 13 pp. | DOI | MR