Deformed ladder operators for the~generalized one- and two-mode squeezed harmonic oscillator in the~presence of a minimal length
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 105-120
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct the deformed ladder operators in the presence of a minimal length to study the one- and two-mode squeezed harmonic oscillator. The generalized Hamiltonian of the system is expressed in terms of a deformed $su(1,1)$ algebra. The realizations of this algebra allow us to convert the purely quantum mechanical problem of the model into a differential equation. By means of the Nikiforov–Uvarov method, the energy eigenvalues are obtained and the corresponding wave functions, in the momentum space, are expressed in terms of hypergeometric functions. Our study shows that the domain of existence of the energy levels is extended and this extension is due to the deformation parameter.
Keywords:
harmonic oscillator, minimal length, ladder operators, deformed $su(1,1)$ algebra.
@article{TMF_2022_211_1_a6,
author = {F. A. Dossa and G. Y. H. Avossevou},
title = {Deformed ladder operators for the~generalized one- and two-mode squeezed harmonic oscillator in the~presence of a minimal length},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {105--120},
publisher = {mathdoc},
volume = {211},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/}
}
TY - JOUR AU - F. A. Dossa AU - G. Y. H. Avossevou TI - Deformed ladder operators for the~generalized one- and two-mode squeezed harmonic oscillator in the~presence of a minimal length JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 105 EP - 120 VL - 211 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/ LA - ru ID - TMF_2022_211_1_a6 ER -
%0 Journal Article %A F. A. Dossa %A G. Y. H. Avossevou %T Deformed ladder operators for the~generalized one- and two-mode squeezed harmonic oscillator in the~presence of a minimal length %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 105-120 %V 211 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/ %G ru %F TMF_2022_211_1_a6
F. A. Dossa; G. Y. H. Avossevou. Deformed ladder operators for the~generalized one- and two-mode squeezed harmonic oscillator in the~presence of a minimal length. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 105-120. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/