@article{TMF_2022_211_1_a6,
author = {F. A. Dossa and G. Y. H. Avossevou},
title = {Deformed ladder operators for the~generalized one- and two-mode squeezed harmonic oscillator in the~presence of a minimal length},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {105--120},
year = {2022},
volume = {211},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/}
}
TY - JOUR AU - F. A. Dossa AU - G. Y. H. Avossevou TI - Deformed ladder operators for the generalized one- and two-mode squeezed harmonic oscillator in the presence of a minimal length JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 105 EP - 120 VL - 211 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/ LA - ru ID - TMF_2022_211_1_a6 ER -
%0 Journal Article %A F. A. Dossa %A G. Y. H. Avossevou %T Deformed ladder operators for the generalized one- and two-mode squeezed harmonic oscillator in the presence of a minimal length %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 105-120 %V 211 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/ %G ru %F TMF_2022_211_1_a6
F. A. Dossa; G. Y. H. Avossevou. Deformed ladder operators for the generalized one- and two-mode squeezed harmonic oscillator in the presence of a minimal length. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 105-120. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a6/
[1] A. Kempf, G. Mangano, R. B. Mann, “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52:2 (1995), 1108–1118, arXiv: hep-th/9412167 | DOI | MR
[2] H. Hinrichsen, A. Kempf, “Maximal localization in the presence of minimal uncertainties in positions and in momenta”, J. Math. Phys., 37:5 (1996), 2121–2137, arXiv: hep-th/9510144 | DOI | MR
[3] M. Maggiore, “The algebraic structure of the generalized uncertainty principle”, Phys. Lett. B, 319:1–3 (1993), 83–86, arXiv: hep-th/9309034 | DOI | MR
[4] A. Kempf, G. Mangano, “Minimal length uncertainty relation and ultraviolet regularization”, Phys. Rev. D, 55:12 (1997), 7909–7920, arXiv: hep-th/9612084 | DOI
[5] A. Kempf, “Non-pointlike particles in harmonic oscillators”, J. Phys. A: Math. Gen., 30:6 (1997), 2093–2101, arXiv: hep-th/9604045 | DOI | MR
[6] L. N. Chang, D. M. Minic, N. Okamura, T. Takeuchi, “Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem”, Phys. Rev. D, 65:12 (2002), 125028, 8 pp., arXiv: hep-th/0201017 | DOI | MR
[7] P. Pedram, “New approach to nonperturbative quantum mechanics with minimal length uncertainty”, Phys. Rev. D, 85:2 (2002), 024016, 12 pp., arXiv: 1112.2327 | DOI
[8] I. Dadić, L. Jonke, S. Meljanac, “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. D, 67:8 (2003), 087701, 4 pp., arXiv: hep-th/0210264 | DOI
[9] K. Nouicer, “Pauli–Hamiltonian in the presence of minimal lengths”, J. Math. Phys., 47:12 (2006), 122102, 11 pp. | DOI | MR
[10] T. V. Fityo, I. O. Vakarchuk, V. M. Tkachuk, “One-dimensional Coulomb-like problem in deformed space with minimal length”, J. Phys. A: Math. Gen., 39:9 (2006), 2143–2149, arXiv: quant-ph/0507117 | DOI | MR
[11] P. Pedram, “A note on the one-dimensional hydrogen atom with minimal length uncertainty”, J. Phys. A: Math. Theor., 45:50 (2012), 505304, 11 pp. | DOI | MR
[12] P. Pedram, “One-dimensional hydrogen atom with minimal length uncertainty and maximal momentum”, Europhys. Lett., 101:3 (2013), 30005, 6 pp., arXiv: 1205.0937 | DOI
[13] F. Brau, “Minimal length uncertainty relation and the hydrogen atom”, J. Phys. A: Math. Gen., 32:44 (1999), 7691–7696, arXiv: quant-ph/9905033 | DOI | MR
[14] R. Akhoury, Y.-P. Yao, “Minimal length uncertainty relation and the hydrogen spectrum”, Phys. Lett. B, 572:1–2 (2003), 37–42, arXiv: hep-ph/0302108 | DOI
[15] S. Benczik, L. N. Chang, D. Minic, T. Takeuchi, “Hydrogen-atom spectrum under a minimal-length hypothesis”, Phys. Rev. A, 72:1 (2005), 012104, 4 pp., arXiv: hep-th/0502222 | DOI
[16] M. Betrouche, M. Maamache, J. R. Choi, “Three-dimensional Dirac oscillator with minimal length: Novel phenomena for quantized energy”, Adv. High Energy Phys., 2013 (2013), 383957, 10 pp. | DOI | MR
[17] C. Quesne, V. M. Tkachuk, “Dirac oscillator with nonzero minimal uncertainty in position”, J. Phys. A: Math. Gen., 38:8 (2005), 1747–1765, arXiv: math-ph/0412052 | DOI | MR
[18] P. Pedram, K. Nozari, S. H. Taheri, “The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field”, JHEP, 2011:3 (2011), 093, 11 pp. | DOI | Zbl
[19] P. Pedram, “Exact ultra cold neutrons' energy spectrum in gravitational quantum mechanics”, Eur. Phys. J. C, 73:10 (2013), 2609, 5 pp., arXiv: 1309.7284 | DOI
[20] Kh. Nouicer, “Casimir effect in the presence of minimal lengths”, J. Phys. A: Math. Gen., 38:46 (2005), 10027–10035, arXiv: hep-th/0512027 | DOI | MR
[21] U. Harbach, S. Hossenfelder, “The Casimir effect in the presence of a minimal length”, Phys. Lett. B, 632:2–3 (2005), 379–383 | DOI
[22] A. M. Frassino, O. Panella, “Casimir effect in minimal length theories based on a generalized uncertainty principle”, Phys. Rev. D, 85:4 (2012), 045030, 10 pp., arXiv: 1112.2924 | DOI
[23] P. Pedram, “The minimal length and the Shannon entropic uncertainty relation”, Adv. High Energy Phys., 2016 (2016), 5101389, 8 pp. | DOI
[24] M. Blasone, G. Lambiase, G. G. Luciano, L. Petruzziello, F. Scardigli, “Heuristic derivation of Casimir effect in minimal length theories”, Internat. J. Modern Phys. D, 29:2 (2020), 2050011, 17 pp., arXiv: 1912.00241 | DOI | MR
[25] H. Hassanabadi, E. Maghsoodi, A. N. Ikot, S. Zarrinkamar, “Minimal length Schrödinger equation with harmonic potentialin the presence of a magnetic field”, Adv. High Energy Phys., 2013 (2013), 923686, 6 pp. | DOI | MR
[26] P. Pedram, “A higher order GUP with minimal length uncertainty and maximal momentum”, Phys. Lett. B, 714:2–5 (2012), 317–323, arXiv: 1110.2999 | DOI
[27] K. Nozari, A. Etemadi, “Minimal length, maximal momentum, and Hilbert space representation of quantum mechanics”, Phys. Rev. D, 85:10 (2012), 104029, 12 pp., arXiv: 1205.0158 | DOI
[28] L. M. Lawson, “Minimal and maximal lengths from position-dependent non-commutativity”, J. Phys. A: Math. Theor., 53:11 (2020), 115303, 23 pp., arXiv: 2012.06906 | DOI | MR
[29] F. A. Dossa, “One-dimensional harmonic oscillator problem and its hidden $SU(1,1)$ symmetry in the presence of a minimal length”, Phys. Lett. A, 384:35 (2020), 126891, 8 pp. | DOI | MR
[30] F. A. Dossa, “Thermodynamic properties and algebraic solution of the $N$-dimensional harmonic oscillator with minimal length uncertainty relations”, Phys. Scr., 96:10 (2021), 105703, 10 pp. | DOI
[31] J. A. C. Gallas, “Some matrix elements for Morse oscillators”, Phys. Rev. A, 21:6 (1980), 1829–1834 | DOI
[32] V. S. Vasan, R. J. Cross, “Matrix elements for Morse oscillators”, J. Chem. Phys., 78:6 (1983), 3869–3871 | DOI
[33] M. S. Swanson, “Transition elements for a non-Hermitian quadratic Hamiltonian”, J. Math. Phys., 45:2 (2004), 585–601 | DOI | MR
[34] E. T. Jaynes, F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proc. IEEE, 51:1 (1963), 89–109 | DOI
[35] Y.-Z. Zhang, “Solving the two-mode squeezed harmonic oscillator and the $k$th-order harmonic generation in Bargmann–Hilbert spaces”, J. Phys. A: Math. Theor., 46:45 (2013), 455302, 13 pp. | DOI | MR
[36] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | DOI | MR | MR | Zbl
[37] F. A. Dossa, G. Y. H. Avossevou, “Relativistic dynamics for a particle carrying a non-Abelian charge in a non-Abelian background electromagnetic field”, J. Math. Phys., 61:2 (2020), 022302, 13 pp. | DOI | MR