Integration of a defocusing nonlinear Schrödinger equation with additional terms
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 84-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse spectral problem method is used to integrate the nonlinear Schrödinger equation with some additional terms in the class of infinite-gap periodic functions. We reveal the evolution of spectral data for a periodic Dirac operator whose coefficients solve the Cauchy problem for a nonlinear Schrödinger equation with some additional terms. Several examples are given to illustrate the algorithm described in the paper.
Keywords: nonlinear Schrödinger equation, Dirac operator, spectral data, inverse spectral problem, system of Dubrovin equations, trace formulas.
@article{TMF_2022_211_1_a5,
     author = {U. B. Muminov and A. B. Khasanov},
     title = {Integration of a~defocusing nonlinear {Schr\"odinger} equation with additional terms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {84--104},
     year = {2022},
     volume = {211},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a5/}
}
TY  - JOUR
AU  - U. B. Muminov
AU  - A. B. Khasanov
TI  - Integration of a defocusing nonlinear Schrödinger equation with additional terms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 84
EP  - 104
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a5/
LA  - ru
ID  - TMF_2022_211_1_a5
ER  - 
%0 Journal Article
%A U. B. Muminov
%A A. B. Khasanov
%T Integration of a defocusing nonlinear Schrödinger equation with additional terms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 84-104
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a5/
%G ru
%F TMF_2022_211_1_a5
U. B. Muminov; A. B. Khasanov. Integration of a defocusing nonlinear Schrödinger equation with additional terms. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 84-104. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a5/

[1] C. S. Gardner, J. M. Green, M. D. Kruskal, R. M. Miura, “Method for solving the Korteveg–deVries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[2] L. D. Faddeev, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Tr. MIAN SSSR, 73 (1964), 314–336 | MR | Zbl

[3] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | DOI | MR

[4] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | MR | Zbl | Zbl

[5] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR

[6] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki v odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[7] M. Wadati, “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 32:6 (1972), 1681–1681 | DOI

[8] V. E. Zakharov, L. A. Takhtadzhyan, L. D. Faddeev, “Polnoe opisanie reshenii uravneniya “Sin-Gordon””, Dokl. AN SSSR, 219:6 (1974), 1334–1337 | MR | Zbl

[9] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Sugur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR

[10] A. R. Its, V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Friza”, TMF, 23:1 (1975), 51–68 | DOI | MR

[11] B. A. Dubrovin, S. P. Novikov, “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, ZhETF, 67:6 (1974), 2131–2144 | MR

[12] A. R. Its, “Obraschenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenii”, Vest. Leningr. un-ta. Ser. Matem. Mekhan. Astron., 7:2 (1976), 39–46 | MR | Zbl

[13] A. R. Its, V. P. Kotlyarov, “Yavnye formuly dlya reshenii nelineinogo uravneniya Shredingera”, Dokl. AN USSR. Ser. A, 1976, no. 11, 965–968 | MR | Zbl

[14] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Matem. sb., 185:8 (1994), 103–114 | DOI | MR | Zbl

[15] A. O. Smirnov, “Ellipticheskie po $t$ resheniya nelineinogo uravneniya Shredingera”, TMF, 107:2 (1996), 188–200 | DOI | DOI | MR | Zbl

[16] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology, and Mathematical Physics. S. P. Novikov's Seminar: 2006–2007, American Mathematical Society Translations. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 125–138 | MR

[17] A. B. Khasanov, A. B. Yakhshimuratov, “Ob uravnenii Kortevega–de Friza s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, TMF, 164:2 (2010), 214–221 | DOI | DOI

[18] A. B. Khasanov, M. M. Khasanov, “Integrirovanie nelineinogo uravneniya Shredingera s dopolnitelnym chlenom v klasse periodicheskikh funktsii”, TMF, 199:1 (2019), 60–68 | DOI | DOI | MR

[19] A. B. Khasanov, M. M. Matyakubov, “Integrirovanie nelineinogo uravneniya Kortevega–\allowbreakde Friza s dopolnitelnym chlenom”, TMF, 203:2 (2020), 192–204 | DOI | DOI | MR

[20] A. B. Yakhshimuratov, “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions”, Math. Phys. Anal. Geom., 14:2 (2011), 153–169 | DOI | MR

[21] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956 | MR

[22] P. B. Dzhakov, B. S. Mityagin, “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, UMN, 61(370):4 (2006), 77–182 | DOI | DOI | MR | Zbl

[23] A. V. Domrin, “O veschestvenno-analiticheskikh resheniyakh nelineinogo uravneniya Shredingera”, Tr. MMO, 75:2 (2014), 205–218 | DOI

[24] B. M. Levitan, I. S. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | DOI | MR | MR | Zbl

[25] T. V. Misyura, “Kharakteristika spektrov periodicheskoi i antiperiodicheskoi kraevykh zadach, porozhdaemykh operatsiei Diraka (I)”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 30 (1978), 90–101 ; “Характеристика спектров периодической и антипериодической краевых задач, порождаемых операцией Дирака II”, 31 (1979), 102–109 ; “Конечнозонные операторы Дирака”, 33 (1980), 107–111 ; “Аппроксимация периодического потенциала оператора Дирака конечнозонными”, 36 (1981), 55–65 | MR | MR | MR | MR

[26] A. B. Khasanov, A. B. Yakhshimuratov, “Analog obratnoi teoremy G. Borga dlya operatora Diraka”, Uzb. matem. zhurn., 3–4 (2000), 40–46

[27] A. B. Khasanov, A. M. Ibragimov, “Ob obratnoi zadache dlya operatora Diraka s periodicheskim potentsialom”, Uzb. matem. zhurn., 3–4 (2001), 48–55

[28] S. Currie, T. T. Roth, B. A. Watson, “Borg's periodicity theorems for first-order self-adjoint systems with complex potentials”, Proc. Edinb. Math. Soc., 60:3 (2017), 615–633 | DOI | MR

[29] I. V. Ctankevich, “Ob odnoi obratnoi zadache spektralnogo analiza dlya uravneniya Khilla”, Dokl. AN SSSR, 192:1 (1970), 34–37 | MR

[30] E. Trubowitz, “The inverse problem for periodic potentials”, Comm. Pure. Appl. Math., 30:3 (1977), 321–337 | DOI | MR

[31] A. B. Khasanov, A. B. Yakhshimuratov, “Inverse problem on the half-line for the Sturm–Liouville operator with periodic potential”, Differ. Equ., 51:1 (2015), 23–32 | DOI

[32] B. A. Babazhanov, A. B. Khasanov, “Obratnaya zadacha dlya kvadratichnogo puchka operatorov Shturma–Liuvillya s konechnozonnym periodicheskim potentsialom na poluosi”, Differ. uravneniya, 43:6 (2007), 723–730 | DOI | MR

[33] G. Borg, “Eine umkehrung der Sturm–Liouvillschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta. Math., 78 (1946), 1–96 | DOI | MR