Keywords: three-sheeted Riemann surface, extended MKdV hierarchy.
@article{TMF_2022_211_1_a4,
author = {Lihua Wu and Guoliang He},
title = {Quasiperiodic solutions of an~extended {MKdV} hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {65--83},
year = {2022},
volume = {211},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a4/}
}
Lihua Wu; Guoliang He. Quasiperiodic solutions of an extended MKdV hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 65-83. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a4/
[1] A. R. Its, V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Frisa”, TMF, 23:1 (1975), 51–68 | DOI | MR
[2] B. A. Dubrovin, S. P. Novikov, “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, ZhETF, 676:12 (1974), 2131–2144 | MR
[3] P. D. Lax, “Periodic solutions of the KdV equation”, Commun. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR
[4] I. M. Krichever, “Algebro-geometricheskoe postroenie uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, Dokl. AN SSSR, 227:2 (1976), 291–294 | MR | Zbl
[5] E. Date, S. Tanaka, “Periodic multi-soliton solutions of Korteweg–de Vries equation and Toda lattice”, Progr. Theoret. Phys. Suppl., 59 (1976), 107–125 | DOI | MR
[6] Y.-C. Ma, M. J. Ablowitz, “The periodic cubic Schrödinger equation”, Stud. Appl. Math., 65:2 (1981), 113–158 | DOI | MR
[7] A. O. Smirnov, “Veschestvennye konechnozonnye regulyarnye resheniya uravneniya Kaupa–Bussineska”, TMF, 66:1 (1986), 30–46 | DOI | MR | Zbl
[8] P. D. Miller, N. M. Ercolani, I. M. Krichever, C. D. Levermore, “Finite genus solutions to the Ablowitz–Ladik equations”, Commun. Pure Appl. Math., 48:12 (1995), 1369–1440 | DOI | MR
[9] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skij, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1994 | Zbl
[10] M. S. Alber, Yu. N. Fedorov, “Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians”, Inverse Problems, 17:4 (2001), 1017–1042 | DOI | MR
[11] C. Cao, Y. Wu, X. Geng, “Relation between the Kadomtsev–Petviashvili equation and the confocal involutive system”, J. Math. Phys., 40:8 (1999), 3948–3970 | DOI | MR
[12] X. Geng, C. Cao, “Decomposition of the ($2+1$)-dimensional Gardner equation and its quasi-periodic solutions”, Nonlinearity, 14:6 (2001), 1433–1452 | DOI | MR
[13] Z. Qiao, “Generalized $r$-matrix structure and algebro-geometric solution for integrable systems”, Rev. Math. Phys., 13:5 (2001), 545–586 | DOI | MR
[14] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, v. I, Cambridge Studies in Advanced Mathematics, 79, $(1+1)$-Dimensional Continuous Models, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR
[15] F. Gesztesy, H. Holden, J. Michor, G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions, v. II, Cambridge Studies in Advanced Mathematics, 114, $(1+1)$-Dimensional Discrete Models, Cambridge Univ. Press, Cambridge, 2008 | DOI | MR
[16] C. Cao, X. Xu, “A finite genus solution of the H1 model”, J. Phys. A: Math. Theor., 45:5 (2012), 055213, 13 pp. | DOI | MR
[17] R. Dickson, F. Gesztesy, K. Unterkofler, “A new approach to the Boussinesq hierarchy”, Math. Nachr., 198:1 (1999), 51–108 | DOI | MR
[18] R. Dickson, F. Gesztesy, K. Unterkofler, “Algebro-geometric solutions of the Boussinesq hierarchy”, Rev. Math. Phys., 11:7 (1999), 823–879 | DOI | MR
[19] X. Geng, L. Wu, G. He, “Quasi-periodic solutions of the Kaup–Kupershmidt hierarchy”, J. Nonlinear Sci., 23:4 (2013), 527–555 | DOI | MR
[20] G. He, X. Geng, L. Wu, “Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy”, SIAM J. Math. Anal., 46:2 (2014), 1348–1384 | DOI | MR
[21] L. Wu, X. Geng, J. Zang, “Algebro-geometric solution to the Bullough–Dodd–Zhiber–Shabat equation”, Int. Math. Res. Not., 2015:8 (2015), 2141–2167 | DOI | MR
[22] W. Oevel, W. Strampp, “Constrained KP hierarchy and bi-Hamiltonian structures”, Commun. Math. Phys., 157:1 (1993), 51–81 | DOI | MR
[23] G. Geng, D. Du, “Two hierarchies of new nonlinear evolution equations associated with $3\times3$ matrix spectral problems”, Chaos Solitons Fractals, 29:5 (2006), 1165–1172 | DOI | MR
[24] H. M. Farkas, I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, 71, Springer, New York, 1980 | DOI | MR
[25] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR
[26] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 1, Mir, M., 1982 | MR | MR | Zbl