Quasiperiodic solutions of an extended MKdV hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 65-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An extended MKdV hierarchy associated with a $3\times3$ matrix spectral problem is derived by resorting to the Lenard recursion series and zero-curvature equation. The three-sheeted Riemann surface $\mathcal K_{m-1}$ for the extended MKdV hierarchy is defined by the zeros of the characteristic polynomial of the Lax matrix together with two points at infinity. On $\mathcal K_{m-1}$, we introduce the Baker–Akhiezer function and a meromorphic function, and then obtain their explicit representations in terms of the Riemann theta function with the aid of algebraic geometry tools. The asymptotic expansions of the meromorphic function give rise to quasiperiodic solutions for the entire extended MKdV hierarchy.
Mots-clés : quasiperiodic solutions
Keywords: three-sheeted Riemann surface, extended MKdV hierarchy.
@article{TMF_2022_211_1_a4,
     author = {Lihua Wu and Guoliang He},
     title = {Quasiperiodic solutions of an~extended {MKdV} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {65--83},
     year = {2022},
     volume = {211},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a4/}
}
TY  - JOUR
AU  - Lihua Wu
AU  - Guoliang He
TI  - Quasiperiodic solutions of an extended MKdV hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 65
EP  - 83
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a4/
LA  - ru
ID  - TMF_2022_211_1_a4
ER  - 
%0 Journal Article
%A Lihua Wu
%A Guoliang He
%T Quasiperiodic solutions of an extended MKdV hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 65-83
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a4/
%G ru
%F TMF_2022_211_1_a4
Lihua Wu; Guoliang He. Quasiperiodic solutions of an extended MKdV hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 65-83. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a4/

[1] A. R. Its, V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Frisa”, TMF, 23:1 (1975), 51–68 | DOI | MR

[2] B. A. Dubrovin, S. P. Novikov, “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, ZhETF, 676:12 (1974), 2131–2144 | MR

[3] P. D. Lax, “Periodic solutions of the KdV equation”, Commun. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR

[4] I. M. Krichever, “Algebro-geometricheskoe postroenie uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, Dokl. AN SSSR, 227:2 (1976), 291–294 | MR | Zbl

[5] E. Date, S. Tanaka, “Periodic multi-soliton solutions of Korteweg–de Vries equation and Toda lattice”, Progr. Theoret. Phys. Suppl., 59 (1976), 107–125 | DOI | MR

[6] Y.-C. Ma, M. J. Ablowitz, “The periodic cubic Schrödinger equation”, Stud. Appl. Math., 65:2 (1981), 113–158 | DOI | MR

[7] A. O. Smirnov, “Veschestvennye konechnozonnye regulyarnye resheniya uravneniya Kaupa–Bussineska”, TMF, 66:1 (1986), 30–46 | DOI | MR | Zbl

[8] P. D. Miller, N. M. Ercolani, I. M. Krichever, C. D. Levermore, “Finite genus solutions to the Ablowitz–Ladik equations”, Commun. Pure Appl. Math., 48:12 (1995), 1369–1440 | DOI | MR

[9] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skij, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1994 | Zbl

[10] M. S. Alber, Yu. N. Fedorov, “Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians”, Inverse Problems, 17:4 (2001), 1017–1042 | DOI | MR

[11] C. Cao, Y. Wu, X. Geng, “Relation between the Kadomtsev–Petviashvili equation and the confocal involutive system”, J. Math. Phys., 40:8 (1999), 3948–3970 | DOI | MR

[12] X. Geng, C. Cao, “Decomposition of the ($2+1$)-dimensional Gardner equation and its quasi-periodic solutions”, Nonlinearity, 14:6 (2001), 1433–1452 | DOI | MR

[13] Z. Qiao, “Generalized $r$-matrix structure and algebro-geometric solution for integrable systems”, Rev. Math. Phys., 13:5 (2001), 545–586 | DOI | MR

[14] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, v. I, Cambridge Studies in Advanced Mathematics, 79, $(1+1)$-Dimensional Continuous Models, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[15] F. Gesztesy, H. Holden, J. Michor, G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions, v. II, Cambridge Studies in Advanced Mathematics, 114, $(1+1)$-Dimensional Discrete Models, Cambridge Univ. Press, Cambridge, 2008 | DOI | MR

[16] C. Cao, X. Xu, “A finite genus solution of the H1 model”, J. Phys. A: Math. Theor., 45:5 (2012), 055213, 13 pp. | DOI | MR

[17] R. Dickson, F. Gesztesy, K. Unterkofler, “A new approach to the Boussinesq hierarchy”, Math. Nachr., 198:1 (1999), 51–108 | DOI | MR

[18] R. Dickson, F. Gesztesy, K. Unterkofler, “Algebro-geometric solutions of the Boussinesq hierarchy”, Rev. Math. Phys., 11:7 (1999), 823–879 | DOI | MR

[19] X. Geng, L. Wu, G. He, “Quasi-periodic solutions of the Kaup–Kupershmidt hierarchy”, J. Nonlinear Sci., 23:4 (2013), 527–555 | DOI | MR

[20] G. He, X. Geng, L. Wu, “Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy”, SIAM J. Math. Anal., 46:2 (2014), 1348–1384 | DOI | MR

[21] L. Wu, X. Geng, J. Zang, “Algebro-geometric solution to the Bullough–Dodd–Zhiber–Shabat equation”, Int. Math. Res. Not., 2015:8 (2015), 2141–2167 | DOI | MR

[22] W. Oevel, W. Strampp, “Constrained KP hierarchy and bi-Hamiltonian structures”, Commun. Math. Phys., 157:1 (1993), 51–81 | DOI | MR

[23] G. Geng, D. Du, “Two hierarchies of new nonlinear evolution equations associated with $3\times3$ matrix spectral problems”, Chaos Solitons Fractals, 29:5 (2006), 1165–1172 | DOI | MR

[24] H. M. Farkas, I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, 71, Springer, New York, 1980 | DOI | MR

[25] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[26] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 1, Mir, M., 1982 | MR | MR | Zbl