Mots-clés : solution.
@article{TMF_2022_211_1_a3,
author = {Maebel Mesfun and Song-Lin Zhao},
title = {Cauchy matrix scheme for semidiscrete lattice {Korteweg{\textendash}de~Vries-type} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {48--64},
year = {2022},
volume = {211},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a3/}
}
TY - JOUR AU - Maebel Mesfun AU - Song-Lin Zhao TI - Cauchy matrix scheme for semidiscrete lattice Korteweg–de Vries-type equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 48 EP - 64 VL - 211 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a3/ LA - ru ID - TMF_2022_211_1_a3 ER -
Maebel Mesfun; Song-Lin Zhao. Cauchy matrix scheme for semidiscrete lattice Korteweg–de Vries-type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 48-64. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a3/
[1] M. Toda, “Vibration of a chain with a nonlinear interaction”, J. Phys. Soc. Japan, 22:2 (1967), 431–436 | DOI
[2] M. Kac, P. van Moerbeke, “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. Math., 16 (1975), 160–169 | DOI | MR
[3] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR
[4] R. Hirota, “Exact $N$-soliton solution of nonlinear lumped self-dual network equations”, J. Phys. Soc. Japan, 35:1 (1973), 289–294 | DOI
[5] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge Univ. Press, Cambridge, 2004 | MR
[6] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR
[7] R. Hirota, “Nonlinear partial difference equations. I. A difference analogue of the Korteweg–de Vries equation”, J. Phys. Soc. Japan, 43:4 (1977), 1424–1433 | DOI | MR
[8] R. Hirota, “Discretization of the potential modified KdV equation”, J. Phys. Soc. Japan, 67:7 (1998), 2234–2236 | DOI | MR
[9] E. Date, M. Jinbo, T. Miwa, “Method for generating discrete soliton equations. I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 | DOI | MR
[10] F. W. Nijhoff, G. R. W. Quispel, H. W. Capel, “Linearization of nonlinear differential-difference equations”, Phys. Lett. A, 95:6 (1983), 273–276 | DOI | MR
[11] A. S. Fokas, M. J. Ablowitz, “Linearization of the Korteweg–de Vries and Painlevé II equations”, Phys. Rev. Lett., 47:16 (1981), 1096–1100 | DOI | MR
[12] F. W. Nijhoff, G. R. W. Quispel, H. W. Capel, “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97:4 (1983), 125–128 | DOI | MR
[13] F. W. Nijhoff, J. Atkinson, J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42:40 (2009), 404005, 34 pp. | DOI
[14] D.-J. Zhang, S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach”, Stud. Appl. Math., 131:1 (2013), 72–103 | DOI | MR
[15] J. Sylvester, “Sur l'équation en matrices $px=xq$”, C. R. Acad. Sci. Paris, 99:2 (1884), 67–71 | Zbl
[16] S.-L. Zhao, “A discrete negative AKNS equation: generalized Cauchy matrix approach”, J. Nonlinear Math. Phys., 23:4 (2016), 544–562 | DOI | MR
[17] S.-L. Zhao, Y. Shi, “Discrete and semidiscrete models for AKNS equation”, Z. Naturforsch. A, 72:3 (2017), 281–290 | DOI
[18] S.-L. Zhao, “Discrete potential Ablowitz–Kaup–Newell–Segur equation”, J. Differ. Equ. Appl., 25:8 (2019), 1134–1148 | DOI | MR
[19] D.-D. Xu, D.-J. Zhang, S.-L. Zhao, “The Sylvester equation and integrable equations: I. The Korteweg–de Vries system and sine-Gordon equation”, J. Nonlinear Math. Phys., 21:3 (2014), 382–406 | DOI | MR
[20] H. D. Wahlquist, F. B. Estabrook, “Bäcklund transformation for solutions of the Korteweg–de Vries equation”, Phys. Rev. Lett., 31:23 (1973), 1386–1390 | DOI | MR
[21] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR
[22] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs: the consistency approach”, Commun. Math. Phys., 233:3 (2003), 513–543 | DOI | MR
[23] H. Wu, J.-J. Pan, D.-J. Zhang, “Solutions and continuum limits of two semi-discrete lattice potential Korteweg–de Vries equations”, Commun. Theor. Phys., 63:6 (2015), 669–674 | DOI | MR
[24] W. Feng, S.-L. Zhao, Y. Shi, “Rational solutions for lattice potential KdV equation and two semi-discrete lattice potential KdV equations”, Z. Naturforsch. A, 71:2 (2016), 121–128 | DOI
[25] R. Bhatia, P. Rosenthal, “How and why to solve the operator equation $AX-XB=Y$”, Bull. London Math. Soc., 29:1 (1997), 1–21 | DOI | MR
[26] D. J. Zhang, Notes on solutions in Wronskian form to soliton equations: KdV-type, arXiv: nlin.SI/0603008
[27] D.-J. Zhang, S.-L. Zhao, Y.-Y. Sun, J. Zhou, “Solutions to the modified Korteweg–de Vries equation”, Rev. Math. Phys., 26:7 (2014), 14300064, 42 pp. | DOI | MR