Cauchy matrix scheme for semidiscrete lattice Korteweg--de~Vries-type equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 48-64
Voir la notice de l'article provenant de la source Math-Net.Ru
Based on a determining equation set and master function, we consider a Cauchy matrix scheme for three semidiscrete lattice Korteweg–de Vries-type equations. The Lax integrability of these equations is discussed. Various types of solutions, including soliton solutions, Jordan-block solutions, and mixed solutions are derived by solving the determining equation set. Specifically, we find $1$-soliton, $2$-soliton, and the simplest Jordan-block solutions for the semidiscrete lattice potential Korteweg–de Vries equation.
Keywords:
semidiscrete lattice Korteweg–de Vries-type equations, Cauchy
matrix approach, Lax integrability
Mots-clés : solution.
Mots-clés : solution.
@article{TMF_2022_211_1_a3,
author = {Maebel Mesfun and Song-Lin Zhao},
title = {Cauchy matrix scheme for semidiscrete lattice {Korteweg--de~Vries-type} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {48--64},
publisher = {mathdoc},
volume = {211},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a3/}
}
TY - JOUR AU - Maebel Mesfun AU - Song-Lin Zhao TI - Cauchy matrix scheme for semidiscrete lattice Korteweg--de~Vries-type equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 48 EP - 64 VL - 211 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a3/ LA - ru ID - TMF_2022_211_1_a3 ER -
Maebel Mesfun; Song-Lin Zhao. Cauchy matrix scheme for semidiscrete lattice Korteweg--de~Vries-type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 48-64. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a3/