A class of reductions of the two-component KP hierarchy and the Hirota–Ohta system
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 37-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a class of reductions of the two-component KP hierarchy that includes the Hirota–Ohta system hierarchy. The description of the reduced hierarchies is based on the Hirota bilinear identity and an extra bilinear relation characterizing the reduction. We derive the reduction conditions in terms of the Lax operator and higher linear operators of the hierarchy, as well as in terms of the basic two-component KP system of equations.
Keywords: two-component Kadomtsev–Petviashvili hierarchy, reduction, Hirota–Ohta system.
@article{TMF_2022_211_1_a2,
     author = {L. V. Bogdanov and Lingling Xue},
     title = {A~class of reductions of the~two-component {KP} hierarchy and {the~Hirota{\textendash}Ohta} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {37--47},
     year = {2022},
     volume = {211},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a2/}
}
TY  - JOUR
AU  - L. V. Bogdanov
AU  - Lingling Xue
TI  - A class of reductions of the two-component KP hierarchy and the Hirota–Ohta system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 37
EP  - 47
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a2/
LA  - ru
ID  - TMF_2022_211_1_a2
ER  - 
%0 Journal Article
%A L. V. Bogdanov
%A Lingling Xue
%T A class of reductions of the two-component KP hierarchy and the Hirota–Ohta system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 37-47
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a2/
%G ru
%F TMF_2022_211_1_a2
L. V. Bogdanov; Lingling Xue. A class of reductions of the two-component KP hierarchy and the Hirota–Ohta system. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 37-47. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a2/

[1] R. Hirota, Y. Ohta, “Hierarchies of coupled soliton equations. I”, J. Phys. Soc. Japan, 60:3 (1991), 798–809 | DOI | MR

[2] S. Kakei, “Dressing method and the coupled KP hierarchy”, Phys. Lett. A, 264:6 (2000), 449–458, arXiv: solv-int/9909024 | DOI | MR

[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “KP hierarchies of orthogonal and symplectic type. Transformation groups for soliton equations VI”, J. Phys. Soc. Japan, 50:11 (1981), 3813–3818 | DOI | MR

[4] L. V. Bogdanov, E. V. Ferapontov, “Projective differential geometry of higher reductions of the two-dimensional Dirac equation”, J. Geom. Phys., 52:3 (2004), 328–352 | DOI | MR

[5] V. E. Zakharov, S. V. Manakov, “O reduktsiyakh v sistemakh, integriruemykh metodom obratnoi zadachi”, Dokl. RAN, 360:3 (1998), 324–327 | MR | Zbl

[6] L. V. Bogdanov, Analytic-Bilinear Approach to Integrable Hierarchies, Mathematics and its Applications, 493, Kluwer, Dordrecht, 1999 | DOI | MR

[7] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, January 7–9, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl