@article{TMF_2022_211_1_a2,
author = {L. V. Bogdanov and Lingling Xue},
title = {A~class of reductions of the~two-component {KP} hierarchy and {the~Hirota{\textendash}Ohta} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {37--47},
year = {2022},
volume = {211},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a2/}
}
TY - JOUR AU - L. V. Bogdanov AU - Lingling Xue TI - A class of reductions of the two-component KP hierarchy and the Hirota–Ohta system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 37 EP - 47 VL - 211 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a2/ LA - ru ID - TMF_2022_211_1_a2 ER -
L. V. Bogdanov; Lingling Xue. A class of reductions of the two-component KP hierarchy and the Hirota–Ohta system. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 37-47. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a2/
[1] R. Hirota, Y. Ohta, “Hierarchies of coupled soliton equations. I”, J. Phys. Soc. Japan, 60:3 (1991), 798–809 | DOI | MR
[2] S. Kakei, “Dressing method and the coupled KP hierarchy”, Phys. Lett. A, 264:6 (2000), 449–458, arXiv: solv-int/9909024 | DOI | MR
[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “KP hierarchies of orthogonal and symplectic type. Transformation groups for soliton equations VI”, J. Phys. Soc. Japan, 50:11 (1981), 3813–3818 | DOI | MR
[4] L. V. Bogdanov, E. V. Ferapontov, “Projective differential geometry of higher reductions of the two-dimensional Dirac equation”, J. Geom. Phys., 52:3 (2004), 328–352 | DOI | MR
[5] V. E. Zakharov, S. V. Manakov, “O reduktsiyakh v sistemakh, integriruemykh metodom obratnoi zadachi”, Dokl. RAN, 360:3 (1998), 324–327 | MR | Zbl
[6] L. V. Bogdanov, Analytic-Bilinear Approach to Integrable Hierarchies, Mathematics and its Applications, 493, Kluwer, Dordrecht, 1999 | DOI | MR
[7] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, January 7–9, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl