Darboux transformation and exact solutions of the variable-coefficient nonlocal Gerdjikov–Ivanov equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 23-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We for the first time study the integrable nonlocal nonlinear Gerdjikov–Ivanov (GI) equation with variable coefficients. The variable-coefficient nonlocal GI equation is constructed using a Lax pair. On this basis, the Darboux transformation is studied. Exact solutions of the variable-coefficient nonlocal GI equation are then obtained by constructing the $2n$-fold Darboux transformation of the equation. The results show that the solution of the GI equation with variable coefficients is more general than that of its constant-coefficient form. By taking special values for the coefficient function, we can obtain specific exact solutions, such as a kink solution, a periodic solution, a breather solution, a two-soliton interaction solution, etc. The exact solutions are represented visually with the help of images.
Mots-clés : variable-coefficient nonlocal Gerdjikov–Ivanov equation, Darboux transformation, exact solution.
@article{TMF_2022_211_1_a1,
     author = {Yuru Hu and Feng Zhang and Xiangpeng Xin and Hanze Liu},
     title = {Darboux transformation and exact solutions of the~variable-coefficient nonlocal {Gerdjikov{\textendash}Ivanov} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--36},
     year = {2022},
     volume = {211},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a1/}
}
TY  - JOUR
AU  - Yuru Hu
AU  - Feng Zhang
AU  - Xiangpeng Xin
AU  - Hanze Liu
TI  - Darboux transformation and exact solutions of the variable-coefficient nonlocal Gerdjikov–Ivanov equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 23
EP  - 36
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a1/
LA  - ru
ID  - TMF_2022_211_1_a1
ER  - 
%0 Journal Article
%A Yuru Hu
%A Feng Zhang
%A Xiangpeng Xin
%A Hanze Liu
%T Darboux transformation and exact solutions of the variable-coefficient nonlocal Gerdjikov–Ivanov equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 23-36
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a1/
%G ru
%F TMF_2022_211_1_a1
Yuru Hu; Feng Zhang; Xiangpeng Xin; Hanze Liu. Darboux transformation and exact solutions of the variable-coefficient nonlocal Gerdjikov–Ivanov equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 23-36. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a1/

[1] C. E. Mitchell, R. D. Ryne, K. Hwang, S. Nagaitsev, T. Zolkin, “Extracting dynamical frequencies from invariants of motion in finite-dimensional nonlinear integrable systems”, Phys. Rev. E, 103:6 (2021), 062216, 13 pp., arXiv: 2106.02625 | DOI | MR

[2] A. R. Alharbi, M. B. Almatrafi, M. A. E. Abdelrahman, “Analytical and numerical investigation for Kadomtsev–Petviashvili equation arising in plasma physics”, Phys. Scr., 95:4 (2020), 045215, 10 pp. | DOI

[3] Z.-Z. Lan, B.-L. Guo, “Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger–Boussinesq system in a homogeneous magnetized plasma”, Nonlinear Dyn., 100:4 (2020), 3771–3784 | DOI

[4] Khuei Mao, “Poluchenie mnogosolitonnykh reshenii $(2+1)$-mernoi sistemy Kamassy–Kholma s pomoschyu preobrazovanii Darbu”, TMF, 205:3 (2020), 451–466 | DOI | DOI

[5] L. Li, C. Duan, F. Yu, “An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg–de Vries (MKdV) equation”, Phys. Lett. A., 383:14 (2019), 1578–1582 | DOI | MR

[6] X. Lü, S.-J. Chen, “Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types”, Nonlinear Dyn., 103:1 (2021), 947–977 | DOI

[7] J. Manafian, O. A. Ilhan, A. Alizadeh, S. A. Mohammed, “Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics”, Commun. Theor. Phys., 72:7 (2020), 075002, 13 pp. | DOI | MR

[8] X.-J. He, X. Lü, M.-G. Li, “Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the ($3+1$)-dimensional generalized Kadomtsev–Petviashvili equation”, Anal. Math. Phys., 11:1 (2021), 4, 24 pp. | DOI | MR

[9] Y.-Q. Chen, B. Tian, Q.-X. Qu, H. Li, X.-H. Zhao, H.-Y. Tian, M. Wang, “Ablowitz–Kaup–Newell–Segur system, conservation laws and Bäcklund transformation of a variable-coefficient Korteweg–de Vries equation in plasma physics, fluid dynamics or atmospheric science”, Internat. J. Modern Phys. B, 34:25 (2020), 2050226, 8 pp. | DOI | MR

[10] S.-J. Chen, W.-X. Ma, X. Lü, “Bäcklund transformation, exact solutions and interaction behaviour of the ($3+1$)-dimensional Hirota–Satsuma–Ito-like equation”, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105135, 12 pp. | DOI | MR

[11] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations,”, J. Geom. Phys., 157 (2020), 103845, 8 pp. | DOI | MR

[12] W. X. Ma, “Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations”, Appl. Math. Lett., 102 (2020), 106161, 7 pp. | DOI | MR

[13] D. K. Durdiev, A. A. Rakhmonov, “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi poristoi srede: globalnaya razreshimost”, TMF, 195:3 (2018), 491–506 | DOI | DOI | MR

[14] V. S. Gerdjikov, M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures”, Bulg. J. Phys., 10:2 (1983), 130–143 | MR

[15] M. Li, Y. Zhang, R. Ye, Y. Lou, “Exact solutions of the nonlocal Gerdjikov–Ivanov equation”, Commun. Theor. Phys., 73:10 (2021), 105005, 8 pp. | DOI | MR

[16] E. Fan, “Darboux transformation and soliton-like solutions for the Gerdjikov–Ivanov equation”, J. Phys. A: Math. Gen., 33:39 (2000), 6925–6933 | DOI | MR

[17] H. Yilmaz, “Exact solutions of the Gerdjikov–Ivanov equation using Darboux transformations”, J. Nonlinear Math. Phys., 22:1 (2015), 32–46 | DOI

[18] S. Xu, J. He, “The rogue wave and breather solution of the Gerdjikov–Ivanov equation”, J. Math. Phys., 53:6 (2012), 063507, 17 pp., arXiv: 1109.3283 | DOI | MR

[19] X. Xin, Y. Liu, Y. Xia, H. Liu, “Integrability, Darboux transformation and exact solutions for nonlocal couplings of AKNS equations”, Appl. Math. Lett., 119 (2021), 107209, 8 pp. | DOI | MR

[20] Q. Zhang, Y. Zhang, R. Ye, “Exact solutions of nonlocal Fokas–Lenells equation”, Appl. Math. Lett., 98 (2019), 336–343 | DOI | MR

[21] Y.-X. Chen, F.-Q. Xu, Y.-L. Hu, “Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrödinger equation”, Nonlinear Dyn., 95:2 (2019), 1957–1964 | DOI

[22] X. Xin, H. Liu, L. Zhang, Z. Wang, “High order nonlocal symmetries and exact interaction solutions of the variable coefficient KdV equation”, Appl. Math. Lett., 88 (2019), 132–140 | DOI | MR

[23] X.-Y. Tang, S.-J. Liu, Z.-F. Liang, J.-Y. Wang, “A general nonlocal variable coefficient KdV equation with shifted parity and delayed time reversal”, Nonlinear Dyn., 94:1 (2018), 693–702 | DOI

[24] E. Fan, “Integrable evolution systems based on Gerdjikov–Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and $N$-fold Darboux transformation”, J. Math. Phys., 41:11 (2000), 7769–7782 | DOI | MR

[25] B.-Q. Li, Y.-L. Ma, “Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation”, Appl. Math. Comput., 386 (2020), 125469, 20 pp. | MR

[26] G. F. Khelmink, E. A. Panasenko, “Preobrazovaniya Darbu dlya strogoi ierarkhii Kadomtseva–Petviashvili”, TMF, 206:3 (2021), 339–360 | DOI | DOI | MR

[27] Nyan-Khua Li, Gai-Khua Van, Yun-Khuei Kuan, “Mnogosolitonnye resheniya uravneniya Degasperisa–Prochezi i ego korotkovolnovogo predela: podkhod preobrazovaniya Darbu”, TMF, 203:2 (2020), 205–219 | DOI | DOI

[28] M. Wang, B. Tian, C.-C. Hu, S.-H. Liu, “Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber”, Appl. Math. Lett., 119 (2021), 106936, 9 pp. | DOI | MR

[29] H. W. A. Riaz, “Darboux transformation and exact multisolitons for a matrix coupled dispersionless system”, Commun. Theor. Phys., 72:7 (2020), 075001, 7 pp. | DOI | MR

[30] S. Arshed, A. Biswas, M. Abdelaty, Q. Zhou, S. P. Moshokoa, M. Belic, “Optical soliton perturbation for Gerdjikov–Ivanov equation via two analytical techniques”, Chinese J. Phys., 56:6 (2018), 2879–2886 | DOI

[31] F. Kh. Abdullaev, S. A. Darmanyan, P. K. Khabibullaev, Opticheskie solitony, Fan, Tashkent, 1987

[32] G. Agraval, Nelineinaya volokonnaya optika, Mir, M., 1996

[33] X. Tao, C.-Y. Zhang, G.-M. Wei, J. Li, X.-H. Meng, B. Tian, “Symbolic-computation construction of transformations for a more generalized nonlinear Schrödinger equation with applications in inhomogeneous plasmas, optical fibers, viscous fluids and Bose–Einstein condensates”, Eur. Phys. J. B, 55:3 (2007), 323–332 | DOI

[34] L. Wang, J.-H. Zhang, C. Liu, M. Li, F.-H. Qi, “Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects”, Phys. Rev. E, 93:6 (2016), 062217, 15 pp. | DOI | MR