Functional approach to a~Gelfand--Tsetlin-type basis for~$\mathfrak{o}_5$
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 3-22
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a realization of representations of the Lie algebra $\mathfrak{o}_5$ in the space of functions on the group $Spin_5\simeq Sp_4$. In the representations, we take a Gelfand–Tsetlin-type basis associated with the restriction $\mathfrak{o}_5\downarrow\mathfrak{o}_3$. Such a basis is useful in problems appearing in quantum mechanics. We explicitly construct functions on the group that correspond to basis vectors. As in the cases of $\mathfrak{gl}_3$ and $\mathfrak{sp}_4$ Lie algebras, these functions can be expressed in terms of $A$-hypergeometric functions (this does not hold for higher-rank algebras of these series). Using this realization, we obtain formulas for the action of generators.
Keywords:
$A$-hypergeometric functions, Gelfand–Tsetlin-type basis.
@article{TMF_2022_211_1_a0,
author = {D. V. Artamonov},
title = {Functional approach to {a~Gelfand--Tsetlin-type} basis for~$\mathfrak{o}_5$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--22},
publisher = {mathdoc},
volume = {211},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a0/}
}
D. V. Artamonov. Functional approach to a~Gelfand--Tsetlin-type basis for~$\mathfrak{o}_5$. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a0/