Functional approach to a Gelfand–Tsetlin-type basis for $\mathfrak{o}_5$
Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 3-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a realization of representations of the Lie algebra $\mathfrak{o}_5$ in the space of functions on the group $Spin_5\simeq Sp_4$. In the representations, we take a Gelfand–Tsetlin-type basis associated with the restriction $\mathfrak{o}_5\downarrow\mathfrak{o}_3$. Such a basis is useful in problems appearing in quantum mechanics. We explicitly construct functions on the group that correspond to basis vectors. As in the cases of $\mathfrak{gl}_3$ and $\mathfrak{sp}_4$ Lie algebras, these functions can be expressed in terms of $A$-hypergeometric functions (this does not hold for higher-rank algebras of these series). Using this realization, we obtain formulas for the action of generators.
Keywords: $A$-hypergeometric functions, Gelfand–Tsetlin-type basis.
@article{TMF_2022_211_1_a0,
     author = {D. V. Artamonov},
     title = {Functional approach to {a~Gelfand{\textendash}Tsetlin-type} basis for~$\mathfrak{o}_5$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--22},
     year = {2022},
     volume = {211},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - Functional approach to a Gelfand–Tsetlin-type basis for $\mathfrak{o}_5$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 3
EP  - 22
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a0/
LA  - ru
ID  - TMF_2022_211_1_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T Functional approach to a Gelfand–Tsetlin-type basis for $\mathfrak{o}_5$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 3-22
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a0/
%G ru
%F TMF_2022_211_1_a0
D. V. Artamonov. Functional approach to a Gelfand–Tsetlin-type basis for $\mathfrak{o}_5$. Teoretičeskaâ i matematičeskaâ fizika, Tome 211 (2022) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2022_211_1_a0/

[1] I. M. Gelfand, M. L. Tsetlin, “Konechnomernye predstavleniya gruppy ortogonalnykh matrits”, Dokl. AN SSSR, 71:6 (1950), 1017–1020 | MR | Zbl

[2] A. Molev, Yangians and Classical Lie Algebras, Mathematical Surveys and Monographs, 143, AMS, Providence, RI, 2007 | DOI | MR

[3] K. T. Hecht, The Vector Coherent State Method and its Applications to Problems of Higher Symmetries, Lecture Notes in Physics, 290, Springer, Berlin, Heidelberg, 1987 | DOI | MR

[4] K. Helmers, “Symplectic invariants and Flowers' classification of shell model states”, Nucl. Phys., 23 (1961), 594–611 | DOI | MR

[5] D. Artamonov, V. Goloubeva, “Noncommutative Pfaffians and classification of states of five-dimensional quasi-spin”, J. Math. Phys., 53:8 (2012), 083504, 21 pp. | DOI | MR

[6] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoy, “Projected basis for many-phonon systems”, J. Phys. G: Nucl. Phys., 4:2 (1978), 205–217 | DOI

[7] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Opisanie nekotorogo klassa prektsionnykh operatorov dlya prostykh kompleksnykh algebr Li”, Matem. zametki, 26:1 (1979), 15–25 | DOI | MR | Zbl

[8] V. N. Tolstoy, “Fortieth anniversary of extremal projector method for Lie symmetries”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Satellite Conference to the Fourth European Congress of Mathematics (Karlstad, Sweden, July 5 – July 10, 2004), Contemporary Mathematics, 391, eds. J. Fuchs, J. Mickelsson, G. Rozenblioum, A. Stolin, A. Westerberg, AMS, Providence, RI, 2005, 371–384 | DOI | MR

[9] G. E. Baird, L. C. Biedenharn, “On the representations of semisimple Lie groups. II”, J. Math. Phys., 4:12 (1963), 1449–1466 | DOI | MR

[10] D. V. Artamonov, “Formula for the product of Gauss hypergeometric functions and applications”, J. Math. Sci., 249:6 (2020), 817–826 | DOI | MR

[11] D. V. Artamonov, “Koeffitsienty Klebsha–Gordana dlya $\mathfrak{gl}_3$ i gipergeometricheskie funktsii”, Algebra i analiz, 33:1 (2021), 1–29, arXiv: 2101.01049 | DOI

[12] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, MTsNMO, M., 2007 | MR | Zbl

[13] D. V. Artamonov, “Bazis tipa Gelfanda–Tsetlina dlya algebry $\mathfrak{sp}_4$ i gipergeometricheskie funktsii”, TMF, 206:3 (2021), 279–294 | DOI | DOI | MR

[14] I. M. Gelfand, M. I. Graev, V. S. Retakh, “Obschie gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, UMN, 47:4(286) (1992), 3–82 | DOI | MR | Zbl

[15] D. V. Artamonov, $3j$-symbols for representation of the Lie algebra $\mathfrak{gl}_3$ in the Gelfand–Tselin base, arXiv: 2105.10761

[16] D. V. Artamonov, “Antisymmetrization of the Gel'fand–Kapranov–Zelevinskij systems”, J. Math. Sci. (N. Y.), 255:5 (2021), 535–542 | DOI | MR