Interaction between subbands in a~quasi-one-dimensional superconductor
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 455-469
Voir la notice de l'article provenant de la source Math-Net.Ru
In the framework of the Bogoliubov–de Gennes equation, we study the spinless $p$-wave superconductor in an infinite strip in the presence of some impurity. We analytically determine the wave functions of stable bound states with energies close to edge points of the energy gap. We prove that for a small impurity potential, the contribution of the nearest subbands to the wave functions in the case of energy values close to edge points is very small, and these energy levels are significantly closer to the gap edge than in the one-dimensional case. We also study the bound states with nearly zero energy values; in contrast to the one-dimensional case, they do not have the “particle–hole” symmetry. In the cases under study, in addition to the bound states, there also exit resonance states related to them.
Keywords:
Bogoliubov–de Gennes Hamiltonian, superconducting gap, Andreev bound state, Majorana bound state, resonance state, subband.
@article{TMF_2022_210_3_a9,
author = {Yu. P. Chuburin and T. S. Tinyukova},
title = {Interaction between subbands in a~quasi-one-dimensional superconductor},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {455--469},
publisher = {mathdoc},
volume = {210},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a9/}
}
TY - JOUR AU - Yu. P. Chuburin AU - T. S. Tinyukova TI - Interaction between subbands in a~quasi-one-dimensional superconductor JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 455 EP - 469 VL - 210 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a9/ LA - ru ID - TMF_2022_210_3_a9 ER -
Yu. P. Chuburin; T. S. Tinyukova. Interaction between subbands in a~quasi-one-dimensional superconductor. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 455-469. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a9/