Geometric model of the~formation of superdiffusion processes
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 430-441
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a dynamical model of the deformation of a classical diffusion process into superdiffusion implementing the interaction between the diffusion background medium and the external medium. We show how the transformation law of energy characteristics of this deformation is formed gradually.
Mots-clés :
superdiffusion, quasiparticles
Keywords: background medium, stationary process, Hausdorff measure, transfer of energy and momentum, Compton scattering.
Keywords: background medium, stationary process, Hausdorff measure, transfer of energy and momentum, Compton scattering.
@article{TMF_2022_210_3_a7,
author = {N. S. Arkashov and V. A. Seleznev},
title = {Geometric model of the~formation of superdiffusion processes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {430--441},
publisher = {mathdoc},
volume = {210},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a7/}
}
TY - JOUR AU - N. S. Arkashov AU - V. A. Seleznev TI - Geometric model of the~formation of superdiffusion processes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 430 EP - 441 VL - 210 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a7/ LA - ru ID - TMF_2022_210_3_a7 ER -
N. S. Arkashov; V. A. Seleznev. Geometric model of the~formation of superdiffusion processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 430-441. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a7/