Uniqueness of the~Pohlmeyer--Lund--Regge system
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 422-429

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Pohlmeyer–Lund–Regge system is, up to coordinate changes, the unique two-component variational system of chiral type with an irreducible metric that admits a Lax representation with values in the algebra $\mathfrak{so}(3)$.
Keywords: chiral-type system, integrable system, Lax representation, Pohlmeyer–Lund–Regge system.
@article{TMF_2022_210_3_a6,
     author = {A. V. Balandin},
     title = {Uniqueness of {the~Pohlmeyer--Lund--Regge} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--429},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/}
}
TY  - JOUR
AU  - A. V. Balandin
TI  - Uniqueness of the~Pohlmeyer--Lund--Regge system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 422
EP  - 429
VL  - 210
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/
LA  - ru
ID  - TMF_2022_210_3_a6
ER  - 
%0 Journal Article
%A A. V. Balandin
%T Uniqueness of the~Pohlmeyer--Lund--Regge system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 422-429
%V 210
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/
%G ru
%F TMF_2022_210_3_a6
A. V. Balandin. Uniqueness of the~Pohlmeyer--Lund--Regge system. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 422-429. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/