Uniqueness of the Pohlmeyer–Lund–Regge system
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 422-429 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the Pohlmeyer–Lund–Regge system is, up to coordinate changes, the unique two-component variational system of chiral type with an irreducible metric that admits a Lax representation with values in the algebra $\mathfrak{so}(3)$.
Keywords: chiral-type system, integrable system, Lax representation, Pohlmeyer–Lund–Regge system.
@article{TMF_2022_210_3_a6,
     author = {A. V. Balandin},
     title = {Uniqueness of {the~Pohlmeyer{\textendash}Lund{\textendash}Regge} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--429},
     year = {2022},
     volume = {210},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/}
}
TY  - JOUR
AU  - A. V. Balandin
TI  - Uniqueness of the Pohlmeyer–Lund–Regge system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 422
EP  - 429
VL  - 210
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/
LA  - ru
ID  - TMF_2022_210_3_a6
ER  - 
%0 Journal Article
%A A. V. Balandin
%T Uniqueness of the Pohlmeyer–Lund–Regge system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 422-429
%V 210
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/
%G ru
%F TMF_2022_210_3_a6
A. V. Balandin. Uniqueness of the Pohlmeyer–Lund–Regge system. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 422-429. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/

[1] M. Marvan, “On zero-curvature representations of partial differential equations”, Proceedings of the 5th International Conference on Differential Geometry and Its Applications (Opava, Czechoslovakia, August 24–28, 1992), eds. O. Kowalski, D. Krupka, Silesian Univ., Opava, Czech Republic, 1993, 103–122 http://www.emis.de/proceedings/5ICDGA | MR

[2] K. Pohlmeyer, “Integrable Hamiltonian systems and interactions through quadratic constraints”, Commun. Math. Phys., 46:3 (1976), 207–221 | DOI | MR

[3] F. Lund, T. Regge, “Unified approach to strings and vortices with soliton solutions”, Phys. Rev. D, 14:6 (1976), 1524–1535 | DOI | MR

[4] A. V. Balandin, “Characteristics of conservation laws of chiral-type systems”, Lett. Math. Phys., 105:1 (2015), 27–43, arXiv: 1310.5218 | DOI | MR

[5] A. V. Balandin, “Tenzornye polya, assotsiirovannye s integriruemymi sistemami kiralnogo tipa”, Zhurnal SVMO, 21:4 (2019), 405–412 | DOI

[6] A. V. Balandin, “Tensor fields defined by Lax representations”, J. Nonlinear Math. Phys., 23:3 (2016), 323–334 | DOI | MR