Uniqueness of the~Pohlmeyer--Lund--Regge system
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 422-429
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the Pohlmeyer–Lund–Regge system is, up to coordinate changes, the unique two-component variational system of chiral type with an irreducible metric that admits a Lax representation with values in the algebra $\mathfrak{so}(3)$.
Keywords:
chiral-type system, integrable system, Lax representation, Pohlmeyer–Lund–Regge system.
@article{TMF_2022_210_3_a6,
author = {A. V. Balandin},
title = {Uniqueness of {the~Pohlmeyer--Lund--Regge} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {422--429},
publisher = {mathdoc},
volume = {210},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/}
}
A. V. Balandin. Uniqueness of the~Pohlmeyer--Lund--Regge system. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 422-429. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/