@article{TMF_2022_210_3_a6,
author = {A. V. Balandin},
title = {Uniqueness of {the~Pohlmeyer{\textendash}Lund{\textendash}Regge} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {422--429},
year = {2022},
volume = {210},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/}
}
A. V. Balandin. Uniqueness of the Pohlmeyer–Lund–Regge system. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 422-429. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a6/
[1] M. Marvan, “On zero-curvature representations of partial differential equations”, Proceedings of the 5th International Conference on Differential Geometry and Its Applications (Opava, Czechoslovakia, August 24–28, 1992), eds. O. Kowalski, D. Krupka, Silesian Univ., Opava, Czech Republic, 1993, 103–122 http://www.emis.de/proceedings/5ICDGA | MR
[2] K. Pohlmeyer, “Integrable Hamiltonian systems and interactions through quadratic constraints”, Commun. Math. Phys., 46:3 (1976), 207–221 | DOI | MR
[3] F. Lund, T. Regge, “Unified approach to strings and vortices with soliton solutions”, Phys. Rev. D, 14:6 (1976), 1524–1535 | DOI | MR
[4] A. V. Balandin, “Characteristics of conservation laws of chiral-type systems”, Lett. Math. Phys., 105:1 (2015), 27–43, arXiv: 1310.5218 | DOI | MR
[5] A. V. Balandin, “Tenzornye polya, assotsiirovannye s integriruemymi sistemami kiralnogo tipa”, Zhurnal SVMO, 21:4 (2019), 405–412 | DOI
[6] A. V. Balandin, “Tensor fields defined by Lax representations”, J. Nonlinear Math. Phys., 23:3 (2016), 323–334 | DOI | MR