On the Riemann–Hilbert problem of the matrix Lakshmanan–Porsezian–Daniel system with a $4\times4$ AKNS-type matrix Lax pair
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 387-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial-boundary value problems for the matrix Lakshmanan–Porsezian–Daniel system are studied by utilizing the Fokas unified transform approach. First, the spectral analysis of the $4\times4$ Ablowitz–Kaup–Newell–Segur-type matrix Lax pair is performed. Second, solutions of the matrix Lakshmanan–Porsezian–Daniel system are reconstructed from a $4\times4$ matrix Riemann–Hilbert problem. It is proved in addition that the spectral functions are not independent but are related by the so-called global relation.
Keywords: Volterra integral equations, Riemann–Hilbert problem, matrix Lakshmanan–Porsezian–Daniel system, initial-boundary value problem, Fokas unified transform approach.
@article{TMF_2022_210_3_a3,
     author = {Beibei Hu and Xiaomei Yu and Ling Zhang},
     title = {On {the~Riemann{\textendash}Hilbert} problem of the~matrix {Lakshmanan{\textendash}Porsezian{\textendash}Daniel} system with a~$4\times4$ {AKNS-type} matrix {Lax} pair},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {387--404},
     year = {2022},
     volume = {210},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a3/}
}
TY  - JOUR
AU  - Beibei Hu
AU  - Xiaomei Yu
AU  - Ling Zhang
TI  - On the Riemann–Hilbert problem of the matrix Lakshmanan–Porsezian–Daniel system with a $4\times4$ AKNS-type matrix Lax pair
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 387
EP  - 404
VL  - 210
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a3/
LA  - ru
ID  - TMF_2022_210_3_a3
ER  - 
%0 Journal Article
%A Beibei Hu
%A Xiaomei Yu
%A Ling Zhang
%T On the Riemann–Hilbert problem of the matrix Lakshmanan–Porsezian–Daniel system with a $4\times4$ AKNS-type matrix Lax pair
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 387-404
%V 210
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a3/
%G ru
%F TMF_2022_210_3_a3
Beibei Hu; Xiaomei Yu; Ling Zhang. On the Riemann–Hilbert problem of the matrix Lakshmanan–Porsezian–Daniel system with a $4\times4$ AKNS-type matrix Lax pair. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 387-404. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a3/

[1] M. Lakshmanan, K. Porsezian, M. Daniel, “Effect of discreteness on the continuum limit of the Heisenberg spin chain”, Phys. Lett. A, 133:9 (1988), 483–488 | DOI

[2] K. Porsezian, M. Daniel, M. Lakshmanan, “On the integrability aspects of the one-dimensional classical continuum isotropic Heisenberg spin chain”, J. Math. Phys., 33:5 (1992), 1807–1816 | DOI | MR

[3] H.-Q. Zhang, B. Tian, X.-H. Meng, X. Lu, W.-J. Liu, “Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation”, Eur. Phys. J. B, 72:2 (2009), 233–239 | DOI | MR

[4] L. H. Wang, K. Porsezian, J. S. He, “Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation”, Phys. Rev. E, 87:5 (2013), 053202, 10 pp., arXiv: 1304.8085 | DOI

[5] L. Wang, J.-H. Zhang, Z.-Q. Wang, C. Liu, M. Li, F.-H. Qi, R. Guo, “Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation”, Phys. Rev. E, 93:1 (2016), 012214, 12 pp. | DOI | MR

[6] J. Manafian, M. Foroutan, A. Guzali, “Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model”, Eur. Phys. J. Plus, 132:11 ((2017), 494, 22 pp. | DOI

[7] R. T. Alqahtani, M. M. Babatin, A. Biswas, “Bright optical solitons for Lakshmanan–Porsezian–Daniel model by semi-inverse variational principle”, Optik, 154 (2018), 109–114 | DOI

[8] A. Biswas, Y. Yildirim, E. Yasar, Q. Zhou, S. P. Moshokoa, M. Belic, “Optical solitons for Lakshmanan–Porsezian–Daniel equation by modified simple equation method”, Optik, 160 (2018), 24–32 | DOI

[9] A. Javid, N. Raza, “Singular and dark optical solitons to the well posed Lakshmanan–Porsezian–Daniel model”, Optik, 171 (2018), 120–129 | DOI

[10] M. Ekici, “Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model by extended Jacobi's elliptic function expansion scheme”, Optik, 172 (2018), 651–656 | DOI

[11] H. Rezazadeh, D. Kumar, A. Neirameh, M. Eslami, M. Mirzazadeh, “Applications of three methods for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model with Kerr law nonlinearity”, Pramana J. Phys., 94:1 (2020), 39, 11 pp. | DOI

[12] H. Xin, “Optical envelope patterns in nonlinear media modeled by the Lakshmanan–Porsezian–Daniel equation”, Optik, 227 (2021), 165839, 8 pp. | DOI

[13] W. Liu, D.-Q. Qiu, Z.-W. Wu, J.-S. He, “Dynamical behavior of solution in integrable nonlocal Lakshmanan–Porsezian–Daniel equation”, Commun. Theor. Phys., 65:6 (2016), 671–676 | DOI | MR

[14] Y. Yang, T. Suzuki, X. Cheng, “Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan–Porsezian–Daniel equation”, Appl. Math. Lett., 99 (2020), 105998, 8 pp. | DOI | MR

[15] H. Yépez-Martínez, J. F. Gómez-Aguilar, “M-derivative applied to the soliton solutions for the Lakshmanan–Porsezian–Daniel equation with dual-dispersion for optical fibers”, Opt. Quant. Electron., 51:1 (2019), 31, 28 pp. | DOI

[16] P. Veeresha, D. G. Prakasha, H. M. Baskonus, G. Yel, “An efficient analytical approach for fractional Lakshmanan–Porsezian–Daniel model”, Math. Methods Appl. Sci., 43:7 (2020), 4136–4155 | DOI | MR

[17] D.-Y. Liu, B. Tian, X.-Y. Xie, “Bound-state solutions, Lax pair and conservation laws for the coupled higher-order nonlinear Schrödinger equations in the birefringent or two-mode fiber”, Modern Phys. Lett. B, 31:12 (2017), 1750067, 10 pp. | DOI | MR

[18] W.-R. Sun, D.-Y. Liu, X.-Y. Xie, “Vector semirational rogue waves and modulation instability for the coupled higherorder nonlinear Schrödinger equations in the birefringent optical fibers”, Chaos, 27:4 (2017), 043114, 9 pp. | DOI | Zbl

[19] T. Xu, G. He, “Higher-order interactional solutions and rogue wave pairs for the coupled Lakshmanan–Porsezian–Daniel equations”, Nonlinear Dyn., 98:3 (2019), 1731–1744 | DOI

[20] Y. Ye, C. Hou, D. Cheng, S. Chen, “Rogue wave solutions of the vector Lakshmanan–Porsezian–Daniel equation”, Phys. Lett. A., 384:11 (2020), 126226, 6 pp. | DOI | MR

[21] M.-J. Dong, L.-X. Tian, “Characteristics of rogue waves on a soliton background of the vector Lakshmanan–Porsezian–Daniel equation”, Math. Methods Appl. Sci., 44:7 (2021), 5225–5237 | DOI | MR

[22] Z. Zhang, B. Tian, L. Liu, Y. Sun, Z. Du, “Lax pair, breather-to-soliton conversions, localized and periodic waves for a coupled higher-order nonlinear Schrödinger system in a birefringent optical fiber”, Eur. Phys. J. Plus, 134:4 (2019), 129, 11 pp. | DOI

[23] S. Saravana Veli, M. M. Latha, “A generalized Davydov model with interspine coupling and its integrable discretization”, Phys. Scr., 86:2 (2012), 025003, 11 pp. | DOI

[24] W.-R. Sun, B. Tian, Y.-F. Wang, H.-L. Zhen, “Soliton excitations and interactions for the three-coupled fourth-order nonlinear Schrödinger equations in the alpha helical proteins”, Eur. Phys. J. D, 69:6 (2015), 146, 9 pp. | DOI

[25] Z. Du, B. Tian, Q.-X. Qu, H.-P. Chai, X.-Y. Wu, “Semirational rogue waves for the three-coupled fourth-order nonlinear Schrödinger equations in an alpha helical protein”, Superlattice Microstruct., 112 (2017), 362–373 | DOI

[26] W.-R. Sun, “Vector solitons and rogue waves of the matrix Lakshmanan–Porsezian–Daniel equation”, Nonlinear Dyn., 102:3 (2020), 1743–1751 | DOI

[27] H.-Q. Zhang, J. Li, T. Xu, Y.-X. Zhang, W. Hu, B. Tian, “Optical soliton solutions for two coupled nonlinear Schrödinger systems via Darboux transformation”, Phys. Scr., 76:5 (2007), 452–460 | DOI

[28] X. Lü, B. Tian, “Vector bright soliton behaviors associated with negative coherent coupling”, Phys. Rev. E, 85:2 (2012), 026117 | DOI

[29] W.-R. Sun, L. Wang, “Matter rogue waves for the three-component Gross–Pitaevskii equations in the spinor Bose–Einstein condensates”, Proc. R. Soc. A, 474:2209 (2018), 20170276, 15 pp. | DOI | MR

[30] W.-R. Sun, L. Wang, “Vector rogue waves, rogue wave-to-soliton conversions and modulation instability of the higher-order matrix nonlinear Schrödinger equation”, Eur. Phys. J. Plus, 133:12 (2018), 495, 15 pp. | DOI

[31] A. S. Fokas, “A unified transform method for solving linear and certain nonlinear PDEs”, Proc. Roy. Soc. London Ser. A, 453:1962 (1997), 1411–1443 | DOI | MR

[32] J. Lenells, “Initial-boundary value problems for integrable evolution equations with $3\times 3$ Lax pairs”, Phys. D, 241:8 (2012), 857–875 | DOI | MR

[33] J. Lenells, “The Degasperis–Procesi equation on the half-line”, Nonlinear Anal., 76 (2013), 122–139 | DOI | MR

[34] J. Xu, E. Fan, “The unified transform method for the Sasa–Satsuma equation on the half-line”, Proc. Roy. Soc. London Ser. A, 469:2159 (2013), 20130068, 25 pp. | DOI | MR

[35] J. Xu, E. Fan, “The three-wave equation on the half-line”, Phys. Lett. A, 378:1–2 (2014), 26–33 | DOI | MR

[36] A. Boutet de Monvel, D. Shepelsky, “The Ostrovsky–Vakhnenko equation by a Riemann–Hilbert approach”, J. Phys. A: Math. Theor., 48:3 (2015), 035204, 34 pp. | DOI | MR

[37] A. Boutet de Monvel, D. Shepelsky, L. Zielinski, “The short pulse equation by a Riemann–Hilbert approach”, Lett. Math. Phys., 107:7 (2017), 1345–1373 | DOI | MR

[38] X. G. Geng, H. Liu, J. Y. Zhu, “Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line”, Stud. Appl. Math., 135:3 (2015), 310–346 | DOI | MR

[39] H. Liu, X. Geng, “Initial-boundary problems for the vector modified Korteweg–de Vries equation via Fokas unified transform method”, J. Math. Anal. Appl., 440:2 (2016), 578–596 | DOI | MR

[40] S.-F. Tian, “Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method”, J. Phys. A: Math. Theor., 50:39 (2017), 395204, 32 pp. | DOI | MR

[41] Q.-Z. Zhu, E.-G. Fan, J. Xu, “Initial-boundary value problem for two-component Gerdjikov–Ivanov equation with $3\times 3$ Lax pair on half-line”, Commun. Theor. Phys., 68:4 (2017), 425–438, arXiv: 1709.03881 | DOI | MR

[42] Z. Yan, “An initial-boundary value problem for the integrable spin-1 Gross–Pitaevskii equations with a $4\times4$ Lax pair on the half-line”, Chaos, 27:5 (2017), 053117, 21 pp., arXiv: 1704.08534 | DOI | MR

[43] Z. Yan, “Initial-boundary value problem for the spin-1 Gross–Pitaevskii system with a $4\times4$ Lax pair on a finite interval”, J. Math. Phys., 60:8 (2019), 083511, 47 pp., arXiv: 1705.10665 | DOI | MR

[44] B. Hu, L. Zhang, T. Xia, N. Zhang, “On the Riemann–Hilbert problem of the Kundu equation”, Appl. Math. Comput., 381 (2020), 125262, 14 pp. | DOI | MR

[45] B.-B. Hu, T.-C. Xia, N. Zhang, J.-B. Wang, “Initial-boundary value problems for the coupled higher-order nonlinear Schrödinger equations on the half-line”, Internat. J. Nonlinear Numer. Simul., 19:1 (2018), 83–92 | DOI | MR

[46] L. Huang, “The initial-boundary-value problems for the Hirota equation on the half-line”, Chin. Ann. Math. Ser. B, 41:1 (2020), 117–132 | DOI | MR

[47] B.-B. Hu, L. Zhang, T.-C. Xia, “On the Riemann–Hilbert problem of a generalized derivative nonlinear Schrödinger equation”, Commun. Theor. Phys., 73:1 (2021), 015002, 12 pp., arXiv: 2004.07608 | DOI | MR

[48] B. Hu, L. Zhang, N. Zhang, “On the Riemann–Hilbert problem for the mixed Chen–Lee–Liu derivative nonlinear Schrödinger equation”, J. Comput. Appl. Math., 390 (2021), 113393, 14 pp. | DOI | MR