From the Wigner function to the $s$-ordered phase-space distribution via a Gaussian noise channel
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 485-504 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Various phase-space distributions, from the celebrated Wigner function, to the Husimi $Q$ function and the Glauber–Sudarshan $P$ distribution, have played an interesting and important role in the phase-space formulation of quantum mechanics in general, and quantum optics in particular. A unified approach to all these distributions based on the notion of the $s$-ordered phase-space distribution was introduced by Cahill and Glauber. With the intention of illuminating the physical meaning of the parameter $s$, we interpret the $s$-ordered phase-space distribution as the Wigner function of a state under the Gaussian noise channel, and thus reveal an intrinsic connection between the $s$-ordered phase-space distribution and the Gaussian noise channel, which yields a physical insight into the $s$-ordered phase-space distribution. In this connection, the parameter $-s/2$ (rather than the original $s$) acquires the role of the noise occurring in the Gaussian noise channel. An alternative representation of the Gaussian noise channel as the scaling-measurement preparation in a coherent states is illuminated. Furthermore, by exploiting the freedom in the parameter $s$, we introduce a computable and experimentally testable quantifier for optical nonclassicality, reveal its basic properties, and illustrate it by typical examples. A simple and convenient criterion for optical nonclassicality in terms of the $s$-ordered phase-space distribution is derived.
Keywords: Wigner function, $s$-ordered phase-space distribution, Gaussian noise channel, noise parameter, nonclassicality.
@article{TMF_2022_210_3_a11,
     author = {Yue Zhang and Shunlong Luo},
     title = {From {the~Wigner} function to the~$s$-ordered phase-space distribution via {a~Gaussian} noise channel},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {485--504},
     year = {2022},
     volume = {210},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a11/}
}
TY  - JOUR
AU  - Yue Zhang
AU  - Shunlong Luo
TI  - From the Wigner function to the $s$-ordered phase-space distribution via a Gaussian noise channel
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 485
EP  - 504
VL  - 210
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a11/
LA  - ru
ID  - TMF_2022_210_3_a11
ER  - 
%0 Journal Article
%A Yue Zhang
%A Shunlong Luo
%T From the Wigner function to the $s$-ordered phase-space distribution via a Gaussian noise channel
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 485-504
%V 210
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a11/
%G ru
%F TMF_2022_210_3_a11
Yue Zhang; Shunlong Luo. From the Wigner function to the $s$-ordered phase-space distribution via a Gaussian noise channel. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 485-504. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a11/

[1] E. Wigner, “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40:5 (1932), 749–759 | DOI

[2] M. Hillery, R. F. O'Connell, M. O. Scully, E. P. Wigner, “Distribution functions in physics: Fundamentals”, Phys. Rep., 106:3 (1984), 121–167 | DOI | MR

[3] H.-W. Lee, “Theory and application of the quantum phase-space distribution functions”, Phys. Rep., 259:3 (1995), 147–211 | DOI | MR

[4] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | DOI | MR

[5] L. Cohen, Time Frequency Analysis: Theory and Applications, Prentice Hall, Englewood Cliffs, NJ, 1994

[6] H.-W. Lee, “The Gaussian-smoothed Wigner function and its application to precision analysis”, Opt. Commun., 337 (2015), 62–65 | DOI

[7] J. H. Hannay, M. V. Berry, “Quantization of linear maps on the torus-fresnel diffraction by a periodic grating”, Phys. D, 1:3 (1980), 267–290 | DOI | MR

[8] D. F. Walls, G. J. Milburn, Quantum Optics, Springer, Berlin, 2008 | DOI | MR

[9] L. Mandel, E. Volf, Opticheskaya kogerentnost i kvantovaya optika, Fizmatlit, M., 2000 | DOI

[10] M. O. Skalli, M. S. Zubairi, Kvantovaya optika, Fizmatlit, M., 2003 | DOI

[11] S. Haroche, J.-M. Raimond, Exploring the Quantum. Atoms, Cavities and Photons, Oxford Univ. Press, Oxford, 2006 | MR

[12] V. P. Shlyaikh, Kvantovaya optika v fazovom prostranstve, Fizmatlit, M., 2005

[13] C. Miquel, J. P. Paz, M. Saraceno, “Quantum computers in phase space”, Phys. Rev. A, 65:6 (2002), 062309, 14 pp., arXiv: quant-ph/0204149 | DOI

[14] A. Ferraro, S. Olivares, M. G. A. Paris, Gaussian States in Quantum Information, Bibliopolis, Napoli, 2005

[15] S. L. Braunstein, P. van Loock, “Quantum information with continuous variables”, Rev. Modern Phys., 77:2 (2005), 513–577, arXiv: quant-ph/0410100 | DOI | MR

[16] F. Albarelli, M. G. Genoni, M. G. A. Paris, A. Ferraro, “Resource theory of quantum non-Gaussianity and Wigner negativity”, Phys. Rev. A, 98:5 (2018), 052350, 17 pp., arXiv: 1804.05763 | DOI

[17] K. Husimi, “Some formal properties of the density matrix”, Proc. Phys.-Math. Soc. Japan (3), 22:4 (1940), 264–314 | DOI

[18] F. A. Berezin, “Vikovskie i antivikovskie simvoly operatorov”, Matem. sb., 86(128):4(12) (1971), 578–610 | DOI | MR | Zbl

[19] F. A. Berezin, “General concept of quantization”, Commun. Math. Phys., 40:2 (1975), 153–174 | DOI | MR

[20] S. Luo, “Some remarks on CCR and Weyl operators”, Acta Math. Sci., 18, suppl. (1998), 120–123 | DOI

[21] R. J. Glauber, “Coherent and incoherent states of radiation field”, Phys. Rev., 131:6 (1963), 2766–2788 | DOI | MR

[22] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams”, Phys. Rev. Lett., 10:7 (1963), 277–279 | DOI | MR

[23] V. V. Dodonov, V. I. Man'ko (eds.), Theory of Nonclassical States of Light, Taylor and Francis, London, 2003 | DOI

[24] L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence”, Opt. Lett., 4:7 (1979), 205–207 | DOI

[25] C. T. Lee, “Measure of the nonclassicality of nonclassical states”, Phys. Rev. A, 44:5 (1991), R2775–R2778 | DOI | MR

[26] N. Lütkenhaus, S. M. Barnett, “Nonclassical effects in phase space”, Phys. Rev. A, 51:4 (1995), 3340–3342 | DOI

[27] V. V. Dodonov, O. V. Man'ko, V. I. Man'ko, A. Wünsche, “Hilbert–Schmidt distance and non-classicality of states in quantum optics”, J. Modern Opt., 47:4 (2000), 633–654 | DOI | MR

[28] Th. Richter, W. Vogel, “Nonclassicality of quantum states: a hierarchy of observable conditions”, Phys. Rev. Lett., 89:28 (2002), 283601, 4 pp. | DOI

[29] P. Marian, T. A. Marian, H. Scutaru, “Quantifying nonclassicality of one-mode Gaussian states of the radiation field”, Phys. Rev. Lett., 88:15 (2002), 153601, 4 pp. | DOI

[30] J. K. Asbóth, J. Calsamiglia, H. Ritsch, “Computable measure of nonclassicality for light”, Phys. Rev. Lett., 94:17 (2005), 173602, 4 pp., arXiv: quant-ph/0411164 | DOI

[31] B. Yadin, F. C. Binder, J. Thompson, V. Narasimhachar, M. Gu, M. S. Kim, “Operational resource theory of continuous-variable nonclassicality”, Phys. Rev. X, 8:4 (2018), 041038, 18 pp. | DOI

[32] H. Kwon, K. C. Tan, T. Volkoff, H. Jeong, “Nonclassicality as a quantifiable resource for quantum metrology”, Phys. Rev. Lett., 122:4 (2019), 040503, 6 pp. | DOI

[33] S. Luo, Y. Zhang, “Quantifying nonclassicality via Wigner–Yanase skew information”, Phys. Rev. A, 100:3 (2019), 032116, 8 pp. | DOI | MR

[34] S. Luo, Y. Zhang, “Detecting nonclassicality of light via Lieb's concavity”, Phys. Lett. A, 383:26 (2019), 125836, 5 pp. | DOI | MR

[35] K. C. Tan, S. Choi, H. Jeong, “Negativity of quasiprobability distributions as a measure of nonclassicality”, Phys. Rev. Lett., 124:11 (2020), 110404, 6 pp., arXiv: 1906.05579 | DOI | MR

[36] M. Bohmann, E. Agudelo, “Phase-space inequalities beyond negativities”, Phys. Rev. Lett., 124:13 (2020), 133601, 6 pp., arXiv: 1909.10534 | DOI | MR

[37] S. Luo, Y. Zhang, “Quantumness of bosonic field states”, Internat. J. Theor. Phys., 59:1 (2020), 206–217 | DOI | MR

[38] Y. Zhang, S. Luo, “Quantum states as observables: their variance and nonclassicality”, Phys. Rev. A, 102:6 (2020), 062211, 6 pp. | DOI | MR

[39] K. E. Cahill, R. J. Glauber, “Ordered expansions in boson amplitude operators”, Phys. Rev., 177:5 (1969), 1857–1881 ; “Density operators and quasiprobability distributions”, 1882–1902 | DOI | DOI

[40] G. Lachs, “Theoretical aspects of mixtures of thermal and coherent radiation”, Phys. Rev., 138:4B (1965), B1012–B1016 | DOI | MR

[41] A. Vourdas, “Superposition of squeezed coherent states with thermal light”, Phys. Rev. A, 34:4 (1986), 3466–3469 | DOI

[42] A. Vourdas, R. M. Weiner, “Photon-counting distribution in squeezed states”, Phys. Rev. A, 36:12 (1987), 5866–5869 | DOI

[43] M. J. W. Hall, M. J. O'Rourke, “Realistic performance of the maximum information channel”, Quantum Opt., 5:3 (1993), 161–180 | DOI

[44] M. J. W. Hall, “Gaussian noise and quantum-optical communication”, Phys. Rev. A, 50:4 (1994), 3295–3303 | DOI

[45] A. S. Holevo, R. F. Werner, “Evaluating capacities of bosonic Gaussian channels”, Phys. Rev. A, 63:3 (2001), 032312, 14 pp. | DOI

[46] J. Harrington, P. Preskill, “Achievable rates for the Gaussian quantum channel”, Phys. Rev. A, 64:6 (2001), 062301, 10 pp., arXiv: quant-ph/0105058 | DOI

[47] G. M. D'Ariano, P. Lo Presti, “Imprinting complete information about a quantum channel on its output state”, Phys. Rev. Lett., 91:4 (2003), 047902, 4 pp., arXiv: quant-ph/0211133 | DOI

[48] A. Serafini, F. Illuminati, M. G. A. Paris, S. De Siena, “Entanglement and purity of two-mode Gaussian states in noisy channels”, Phys. Rev. A, 69:2 (2004), 022318, 10 pp., arXiv: quant-ph/0310087 | DOI

[49] V. Giovannetti, S. Lloyd, L. Maccone, J. H. Shapiro, B. J. Yen, “Minimum Rényi and Wehrl entropies at the output of bosonic channels”, Phys. Rev. A, 70:2 (2004), 022328, 8 pp., arXiv: quant-ph/0404037 | DOI | MR

[50] C. M. Caves, K. Wódkiewicz, “Fidelity of Gaussian channels”, Open Syst. Inf. Dyn., 11:4 (2004), 309–323 | DOI | MR

[51] G. G. Amosov, “On Weyl channels being covariant with respect to the maximum commutative group of unitaries”, J. Math. Phys., 48:1 (2007), 012104, 14 pp. | DOI | MR

[52] F. Caruso, V. Giovannetti, A. S. Holevo, “One-mode bosonic Gaussian channels: a full weak-degradability classification”, New J. Phys., 8:12 (2006), 310, 18 pp. | DOI

[53] A. S. Kholevo, “Odnomodovye kvantovye gaussovskie kanaly: struktura i kvantovaya propusknaya sposobnost”, Probl. peredachi inform., 43:1 (2007), 3–14 | DOI | MR

[54] A. J. Scott, C. M. Caves, “Teleportation fidelity as a probe of sub-Planck phase-space structure”, Ann. Phys., 323:11 (2008), 2685–2708, arXiv: 0801.1154 | DOI | MR

[55] C. Weedbrook, S. Pirandola, R. G. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd, “Gaussian quantum information”, Rev. Modern Phys., 84:2 (2012), 621–669, arXiv: 1110.3234 | DOI

[56] A. S. Kholevo, Kvantovye sistemy, kanaly, informatsiya. Elektronnoe izdanie, MTsNMO, M., 2014 | MR | Zbl

[57] V. Giovannetti, A. S. Holevo, R. García-Patrón, “A solution of Gaussian optimizer conjecture for quantum channels”, Commun. Math. Phys., 334:3 (2015), 1553–1571, arXiv: 1312.2251 | DOI | MR

[58] A. S. Holevo, “The classical capacity of quantum Gaussian gauge-covariant channels: beyond i.i.d.”, IEEE Information Theory Society Newsletter, 66:4 (2016), 3–6

[59] G. Amosov, “On classical capacity of Weyl channels”, Quantum Inf. Process., 19:11 (2020), 401, 11 pp. | DOI | MR

[60] Y. Zhang, S. Luo, “Quantifying decoherence of Gaussian noise channels”, J. Stat. Phys., 183:2 (2021), 19, 18 pp. | DOI | MR

[61] S. N. Filippov, M. Ziman, “Entanglement sensitivity to signal attenuation and amplification”, Phys. Rev. A., 90:1 (2014), 010301, 5 pp., arXiv: 1405.1754 | DOI

[62] A. Royer, “Wigner function as the expectation value of a parity operator”, Phys. Rev. A., 15:2 (1977), 449–450 | DOI | MR

[63] A. Grossmann, “Parity operator and quantization of $\delta$-functions”, Commun. Math. Phys., 48:3 (1976), 191–194 | DOI | MR

[64] Y. Zhang, S. Luo, “Wigner function, Wigner–Yanase skew information, and parity asymmetry”, Phys. Lett. A, 395 (2021), 127222, 11 pp. | DOI | MR

[65] F. A. Bovino, G. Castagnoli, A. Ekert, P. Horodecki, C. M. Alves, A. V. Sergienko, “Direct measurement of nonlinear properties of bipartite quantum states”, Phys. Rev. Lett., 95:24 (2005), 240407, 4 pp., arXiv: quant-ph/0511187 | DOI | MR