Extremality of translation-invariant Gibbs measures for the $\lambda$-model on the binary Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 470-484 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the $\lambda$-model on the Cayley tree of order $k=2$. Under some conditions, we study translation-invariant Gibbs measures. Moreover, we investigate whether these Gibbs measures are extremal or nonextremal in the set of all Gibbs measures.
Mots-clés : phase transition
Keywords: extremality, Gibbs measure.
@article{TMF_2022_210_3_a10,
     author = {F. M. Mukhamedov and M. M. Rahmatullaev and M. A. Rasulova},
     title = {Extremality of translation-invariant {Gibbs} measures for the~$\lambda$-model on the~binary {Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {470--484},
     year = {2022},
     volume = {210},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a10/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
AU  - M. M. Rahmatullaev
AU  - M. A. Rasulova
TI  - Extremality of translation-invariant Gibbs measures for the $\lambda$-model on the binary Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 470
EP  - 484
VL  - 210
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a10/
LA  - ru
ID  - TMF_2022_210_3_a10
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%A M. M. Rahmatullaev
%A M. A. Rasulova
%T Extremality of translation-invariant Gibbs measures for the $\lambda$-model on the binary Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 470-484
%V 210
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a10/
%G ru
%F TMF_2022_210_3_a10
F. M. Mukhamedov; M. M. Rahmatullaev; M. A. Rasulova. Extremality of translation-invariant Gibbs measures for the $\lambda$-model on the binary Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 470-484. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a10/

[1] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | Zbl

[2] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl

[4] F. Y. Wu, “The Potts model”, Rev. Modern Phys., 54:1 (1982), 235–268 | DOI | MR

[5] N. N. Ganikhodzhaev, “O chistykh fazakh ferromagnitnoi modeli Pottsa s tremya sostoyaniyami na reshetke Bete vtorogo poryadka”, TMF, 85:2 (1990), 163–175 | DOI | MR

[6] G. I. Botirov, U. A. Rozikov, “Model Pottsa s konkuriruyuschimi vzaimodeistviyami na dereve Keli: konturnyi metod”, TMF, 153:1 (2007), 86–97 | DOI | DOI | MR | Zbl

[7] R. M. Khakimov, M. T. Makhammadaliev, “Translyatsionnaya invariantnost periodicheskikh mer Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 199:2 (2019), 291–301 | DOI | DOI | MR

[8] F. Mukhamedov, U. Rozikov, J. F. F. Mendes, “On contour arguments for the three state Potts model with competing interactions on a semi-infinite Cayley tree”, J. Math. Phys., 48:1 (2007), 013301, 14 pp. | DOI | MR

[9] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | DOI | MR

[10] F. Peruggi, F. di Liberto, G. Monroy, “Potts model on Bethe lattices. I. General results”, J. Phys. A: Math. Gen., 16:4 (1983), 811–827 | DOI | MR

[11] F. Peruggi, F. di Liberto, G. Monroy, “Phase diagrams of the $q$-state Potts model on Bethe lattices”, Phys. A, 141:1 (1987), 151–186 | DOI | MR

[12] N. N. Ganikhodjaev, F. M. Mukhamedov, J. F. F. Mendes, “On the three state Potts model with competing interactions on the Bethe lattice”, J. Stat. Mech., 2006:8 (2006), P08012, 29 pp. | DOI

[13] N. Ganikhodjaev, F. Mukhamedov, C. H. Pah, “Phase diagram of the three states Potts model with next nearest neighbour interactions on the Bethe lattice”, Phys. Lett. A, 373:1 (2008), 33–38, arXiv: 0803.2558 | DOI | MR

[14] K. Dzh. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR | MR

[15] R. M. Khakimov, K. O. Umirzakova, “Krainost edinstvennoi translyatsionno-invariantnoi mery Gibbsa dlya modelei ‘hard core’ na dereve Keli poryadka $k=3$”, TMF, 206:1 (2021), 112–124 | DOI | DOI | MR

[16] C. Kuelske, U. A. Rozikov, “Extremality of translation-invariant phases for a three-state SOS-model on the binary tree”, J. Stat. Phys., 160:3 (2015), 659–680 | DOI | MR | Zbl

[17] C. Külske, U. A. Rozikov, “Fuzzy transformations and extremaity of Gibbs measures for the Potts model on a Cayley tree”, Random Structures Algorithms, 50:4 (2017), 636–678 | DOI | MR

[18] U. A. Rozikov, R. M. Khakimov, F. Kh. Khaidarov, “Krainost translyatsionno-invariantnykh mer Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 196:1 (2018), 117–134 | DOI | DOI | MR

[19] R. A. Minlos, Vvedenie v matematicheskuyu statisticheskuyu fiziku, MTsNMO, M., 2002 | DOI | MR | Zbl

[20] F. M. Mukhamedov, “On a factor associated with the unordered phase of $\lambda$-model on a Cayley tree”, Rep. Math. Phys., 53:1 (2004), 1–18 | DOI | MR

[21] U. A. Rozikov, “Opisanie predelnykh gibbsovskikh mer dlya $\lambda$-modelei na reshetkakh Bete”, Sib. matem. zhurn., 39:2 (1998), 427–435 | DOI | MR | Zbl

[22] S. Kissel, C. Külske, U. A. Rozikov, “Hard-core and soft-core Widom–Rowlinson models on Cayley trees”, J. Stat. Mech., 2019:4 (2019), 043204, 22 pp. | DOI | MR

[23] M. M. Rahmatullaev, M. A. Rasulova, “Extremality of translation-invariant Gibbs measures for the Potts-SOS model on the Cayley tree”, J. Stat. Mech., 2021:7 (2021), 073201, 19 pp. | DOI

[24] F. M. Mukhamedov, Ch. Pakh, Kh. Dzhamil, “Osnovnye sostoyaniya i fazovye perekhody $\lambda$-modeli na dereve Keli”, TMF, 194:2 (2018), 304–319 | DOI | DOI | MR

[25] F. Mukhamedov, C. H. Pah, H. Jamil, M. Rahmatullaev, “On ground states and phase transition for $\lambda$-model with the competing Potts interactions on Cayley trees”, Phys. A, 549 (2020), 124184, 18 pp. | DOI | MR

[26] F. M. Mukhamedov, M. M. Rakhmatullaev, M. A. Rasulova, “Slabo periodicheskie osnovnye sostoyaniya dlya $\lambda$-modeli”, Ukr. matem. zhurn., 72:5 (2020), 667–678 | DOI | MR

[27] E. Mossel, Y. Peres, “Information flow on trees”, Ann. Appl. Probab., 13:3 (2003), 817–844 | DOI | MR

[28] E. Mossel, “Survey: information flow on trees”, Graphs, Morphisms and Statistical Physics (Rutgers University, Piscataway, NJ, USA, March 19–21, 2001), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 63, eds. J. Nes̆etril, P. Winkler, AMS, Providence, RI, 2004, 155–170 | DOI | MR | Zbl

[29] H. Kesten, B. P. Stigum, “Additional limit theorems for idencomposable multidimensional Galton–Watson processes”, Ann. Math. Statist., 37:6 (1966), 1463–1481 | DOI | MR

[30] F. Martinelli, A. Sinclair, D. Weitz, “Fast mixing for independent sets, coloring, and other models on trees”, Random Structures Algorithms, 31:2 (2007), 134–172 | DOI | MR

[31] A. Sly, “Reconstruction for the Potts model”, Ann. Probab., 39:4 (2011), 1365–1406 | DOI | MR