Discrete second-order Ablowitz--Kaup--Newell--Segur equation and its modified form
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 350-374
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			By introducing shift relations satisfied by a matrix $\boldsymbol{r}$, we propose a generalized Cauchy matrix scheme and construct a discrete second-order Ablowitz–Kaup–Newell–Segur equation. A modified form of this equation is given. By applying an appropriate skew continuum limit, we obtain the semi-discrete counterparts of these two discrete equations; in the full continuum limit, we derive continuous nonlinear equations. Solutions, including soliton solutions, Jordan-block solutions, and mixed solutions, of the resulting discrete, semi-discrete, and continuous Ablowitz–Kaup–Newell–Segur-type equations are presented. The reductions to discrete, semi-discrete, and continuous nonlinear Schrödinger equations and modified nonlinear Schrödinger equation are also discussed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
second-order AKNS-type equations, discrete models, Cauchy matrix approach, continuum limit
Mots-clés : solution.
                    
                  
                
                
                Mots-clés : solution.
@article{TMF_2022_210_3_a1,
     author = {Shuai Zhang and Song-Lin Zhao and Ying Shi},
     title = {Discrete second-order {Ablowitz--Kaup--Newell--Segur} equation and its modified form},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--374},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/}
}
                      
                      
                    TY - JOUR AU - Shuai Zhang AU - Song-Lin Zhao AU - Ying Shi TI - Discrete second-order Ablowitz--Kaup--Newell--Segur equation and its modified form JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 350 EP - 374 VL - 210 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/ LA - ru ID - TMF_2022_210_3_a1 ER -
%0 Journal Article %A Shuai Zhang %A Song-Lin Zhao %A Ying Shi %T Discrete second-order Ablowitz--Kaup--Newell--Segur equation and its modified form %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 350-374 %V 210 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/ %G ru %F TMF_2022_210_3_a1
Shuai Zhang; Song-Lin Zhao; Ying Shi. Discrete second-order Ablowitz--Kaup--Newell--Segur equation and its modified form. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 350-374. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/