Discrete second-order Ablowitz--Kaup--Newell--Segur equation and its modified form
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 350-374

Voir la notice de l'article provenant de la source Math-Net.Ru

By introducing shift relations satisfied by a matrix $\boldsymbol{r}$, we propose a generalized Cauchy matrix scheme and construct a discrete second-order Ablowitz–Kaup–Newell–Segur equation. A modified form of this equation is given. By applying an appropriate skew continuum limit, we obtain the semi-discrete counterparts of these two discrete equations; in the full continuum limit, we derive continuous nonlinear equations. Solutions, including soliton solutions, Jordan-block solutions, and mixed solutions, of the resulting discrete, semi-discrete, and continuous Ablowitz–Kaup–Newell–Segur-type equations are presented. The reductions to discrete, semi-discrete, and continuous nonlinear Schrödinger equations and modified nonlinear Schrödinger equation are also discussed.
Keywords: second-order AKNS-type equations, discrete models, Cauchy matrix approach, continuum limit
Mots-clés : solution.
@article{TMF_2022_210_3_a1,
     author = {Shuai Zhang and Song-Lin Zhao and Ying Shi},
     title = {Discrete second-order {Ablowitz--Kaup--Newell--Segur} equation and its modified form},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--374},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/}
}
TY  - JOUR
AU  - Shuai Zhang
AU  - Song-Lin Zhao
AU  - Ying Shi
TI  - Discrete second-order Ablowitz--Kaup--Newell--Segur equation and its modified form
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 350
EP  - 374
VL  - 210
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/
LA  - ru
ID  - TMF_2022_210_3_a1
ER  - 
%0 Journal Article
%A Shuai Zhang
%A Song-Lin Zhao
%A Ying Shi
%T Discrete second-order Ablowitz--Kaup--Newell--Segur equation and its modified form
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 350-374
%V 210
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/
%G ru
%F TMF_2022_210_3_a1
Shuai Zhang; Song-Lin Zhao; Ying Shi. Discrete second-order Ablowitz--Kaup--Newell--Segur equation and its modified form. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 350-374. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/