Mots-clés : solution.
@article{TMF_2022_210_3_a1,
author = {Shuai Zhang and Song-Lin Zhao and Ying Shi},
title = {Discrete second-order {Ablowitz{\textendash}Kaup{\textendash}Newell{\textendash}Segur} equation and its modified form},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {350--374},
year = {2022},
volume = {210},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/}
}
TY - JOUR AU - Shuai Zhang AU - Song-Lin Zhao AU - Ying Shi TI - Discrete second-order Ablowitz–Kaup–Newell–Segur equation and its modified form JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 350 EP - 374 VL - 210 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/ LA - ru ID - TMF_2022_210_3_a1 ER -
Shuai Zhang; Song-Lin Zhao; Ying Shi. Discrete second-order Ablowitz–Kaup–Newell–Segur equation and its modified form. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 350-374. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a1/
[1] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations in physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI | MR
[2] M. J. Ablowitz, F. J. Ladik, “A nonlinear difference scheme and inverse scattering”, Stud. Appl. Math., 55:3 (1976), 213–229 | DOI | MR
[3] M. J. Ablowitz, F. J. Ladik, “On the solution of a class of nonlinear partial difference equations”, Stud. Appl. Math., 57:1 (1977), 1–12 | DOI | MR
[4] T. Tsuchida, “Integrable discretization of coupled nonlinear Schrödinger equations”, Rep. Math. Phys., 46:1–2 (2000), 269–278, arXiv: nlin/0002048 | DOI | MR
[5] B. G. Konopelchenko, “Elementary Bäcklund transformations, nonlinear superposition principle and solutions of the integrable equations”, Phys. Lett. A, 87:9 (1982), 445–448 | DOI | MR
[6] R. Willox, M. Hattori, “Discretisations of constrained KP hierarchies”, J. Math. Sci. Univ. Tokyo, 22:3 (2015), 613–661, arXiv: 1406.5828 | MR
[7] C. W. Cao, G. Y. Zhang, “Integrable symplectic maps associated with the ZS-AKNS spectral problem”, J. Phys. A: Math. Theor., 45:26 (2012), 265201, 15 pp. | DOI | MR
[8] R. Hirota, “Discretization of coupled modified KdV equations”, Chaos Solitons Fractals, 11:1–3 (2000), 77–84 | DOI | MR
[9] G. F. Yu, “Discrete analogues of a negative order AKNS equation”, Stud. Appl. Math., 135:2 (2015), 117–138 | DOI | MR
[10] G. R. W. Quispel, F. W. Nijhoff, H. W. Capel, J. van der Linden, “Linear integral equations and nonlinear difference-difference equations”, Phys. A, 125:2–3 (1984), 344–380 | DOI | MR
[11] A. J. Walker, Similarity reductions and integrable lattice equations, Ph.D. thesis, Leeds University, 2001
[12] F. W. Nijhoff, J. Atkinson, J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42:40 (2009), 404005, 34 pp. | DOI
[13] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR
[14] D.-J. Zhang, S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach”, Stud. Appl. Math., 131:1 (2013), 72–103 | DOI | MR
[15] J. Sylvester, “Sur l'équation en matrices $px=xq$”, C. R. Acad. Sci. Paris, 99:2 (1884), 67–71 | Zbl
[16] D.-D. Xu, D.-J. Zhang, S.-L. Zhao, “The Sylvester equation and integrable equations: I. The Korteweg–de Vries system and sine-Gordon equation”, J. Nonlinear Math. Phys., 21:3 (2014), 382–406 | DOI | MR
[17] S.-L. Zhao, “A discrete negative AKNS equation: generalized Cauchy matrix approach”, J. Nonlinear Math. Phys., 23:4 (2016), 544–562 | DOI | MR
[18] S.-L. Zhao, Y. Shi, “Discrete and semidiscrete models for AKNS equation”, Z. Naturforsch. A, 72:3 (2017), 281–290 | DOI
[19] S.-L. Zhao, “Discrete potential Ablowitz–Kaup–Newell–Segur equation”, J. Differ. Equ. Appl., 25:8 (2019), 1134–1148 | DOI | MR
[20] S.-L. Zhao, “The Sylvester equation and integrable equations: The Ablowitz–Kaup–Newell–Segur system”, Rep. Math. Phys., 82:2 (2018), 241–263 | DOI | MR
[21] F. W. Nijhoff, G. R. W. Quispel, J. van der Linden, H. W. Capel, “On some linear integral equations generating solutions of nonlinear partial differential equations”, Phys. A, 119:1–2 (1983), 101–142 | DOI | MR
[22] F. Nijhoff, “On some ‘Schwarzian equations’ and their discrete analogues”, Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, Progress in Nonlinear Differential Equations and Their Applications, 26, eds. A. S. Fokas, I. M. Gel'fand, Birkhäuser, Boston, MA, 1997, 237–260 | DOI | MR
[23] G. R. W. Quispel, H. W. Capel, “The nonlinear Schrödinger equation and the anisotropic Heisenberg spin chain”, Phys. Lett. A, 88:7 (1982), 371–374 | DOI | MR
[24] S.-L. Zhao, W. Feng, Y.-Y. Jin, “Discrete analogues for two nonlinear Schrödinger type equations”, Commun. Nonlinear Sci. Numer. Simul., 72 (2019), 329–341 | DOI | MR
[25] G. Starke, W. Niethammer, “SOR for $\mathbf{A}\mathbf{X}-\mathbf{X}\mathbf{B}=\mathbf{C}$”, Linear Algebra Appl., 154–156 (1991), 355–375 | DOI | MR | Zbl
[26] D.-J. Zhang, S.-L. Zhao, F. W. Nijhoff, “Direct linearization of extended lattice BSQ systems”, Stud. Appl. Math., 129:2 (2012), 220–248 | DOI | MR | Zbl
[27] S. L. Zhao, W. Feng, S. F. Shen, Y. Shi, “Extended lattice Gel'fand–Dikii type hierarchies and solutions”, Sci. Sin. Math., 47:2 (2017), 291–312 | DOI
[28] D.-J. Zhang, Notes on solutions in Wronskian form to soliton equations: KdV-type, arXiv: nlin.SI/0603008
[29] D.-J. Zhang, S.-L. Zhao, Y.-Y. Sun, J. Zhou, “Solutions to the modified Korteweg–de Vries equation”, Rev. Math. Phys., 26:7 (2014), 14300064, 42 pp. | DOI | MR