Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 331-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the Riemann–Hilbert method to the generalized mixed nonlinear Schrödinger equation and obtain a new formula for an explicit $N$-soliton solution, which is expressed as a ratio of $(N+1)\times(N+1)$ and $N\times N$ determinants. Using asymptotic analysis and the property of the Cauchy determinant, we derive simple elastic interactions of $N$-solitons.
Keywords: Riemann–Hilbert problem; generalized Riemann–Hilbert problem, generalized mixed nonlinear Schrödinger equation, asymptotic analysis, $N$-soliton solitonnonlinear Schrödinger equation; asymptotic analysis; $N$-soliton soliton.
@article{TMF_2022_210_3_a0,
     author = {Deqin Qiu and Cong Lv},
     title = {Riemann{\textendash}Hilbert approach and $N$-soliton solutions of the~generalized mixed nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {331--349},
     year = {2022},
     volume = {210},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a0/}
}
TY  - JOUR
AU  - Deqin Qiu
AU  - Cong Lv
TI  - Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 331
EP  - 349
VL  - 210
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a0/
LA  - ru
ID  - TMF_2022_210_3_a0
ER  - 
%0 Journal Article
%A Deqin Qiu
%A Cong Lv
%T Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 331-349
%V 210
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a0/
%G ru
%F TMF_2022_210_3_a0
Deqin Qiu; Cong Lv. Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 331-349. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a0/

[1] A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. I: anomalous dispersion”, Appl. Phys. Lett., 23:3 (1972), 142–144 | DOI

[2] A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. II. Nnormal dispersion”, Appl. Phys. Lett., 23:4 (1973), 171–172 | DOI

[3] R. Y. Chiao, E. Garmire, C. H. Townes, “Self-trapping of optical beams”, Phys. Rev. Lett., 13:15 (1964), 479–482 | DOI

[4] V. E. Zakharov, “Stability of perodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys., 9:2 (1968), 190–194 | DOI

[5] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers”, Phys. Rev. Lett., 45:13 (1980), 1095–1098 | DOI

[6] T. Brabec, F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics”, Rev. Modern Phys., 72:2 (2000), 545–591 | DOI

[7] F. Krausz, M. Ivanov, “Attosecond physics”, Rev. Modern Phys., 81:1 (2009), 163–234 | DOI

[8] G. Agraval, Nelineinaya volokonnaya optika, Mir, M., 2009, 639

[9] Y. Kodama, “Optical solitons in a monomode fiber”, J. Statist. Phys., 39:5–6 (1985), 597–614 | DOI | MR

[10] P. A. Clarkson, J. A. Tuszyński, “Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems near criticality”, J. Phys. A: Math. Gen., 23:19 (1990), 4269–4288 | DOI | MR

[11] Kh. I. Pushkarov, D. I. Pushkarov, I. V. Tomov, “Self-action of light beams in nonlinear media: soliton solutions”, Opt. Quant. Electron., 11 (1979), 471–478 | DOI

[12] D. I. Pushkarov, S. Tanev, “Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities”, Opt. Commun., 124:3–4 (1996), 354–364 | DOI

[13] S. Tanev, D. I. Pushkarov, “Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides”, Opt. Commun., 141:5–6 (1997), 322–328 | DOI

[14] Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials”, Phys. Rev. A, 84:3 (2011), 033815, 7 pp. | DOI

[15] A. Choudhuri, K. Porsezian, “Dark-in-the-Bright solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms”, Opt. Commun., 285:3 (2012), 364–367 | DOI

[16] A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR

[17] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR

[18] H. H. Chen, Y. C. Lee, C. S. Liu, “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scr., 20:3–4 (1979), 490–492 | DOI | MR

[19] V. S. Gerdjikov, M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures”, Bulg. J. Phys., 10:2 (1983), 130–143 | MR

[20] F. Calogero, W. Eckhaus, “Nonlinear evolution equations, rescalings, model PDEs and their integrability. I”, Inverse Problems, 3:2 (1987), 229–262 | DOI | MR

[21] R. S. Johnson, “On the modulation of water waves in the neighbourhood of $kh\approx 1.363$”, Proc. Roy. Soc. London Ser. A, 357:1689 (1977), 131–141 | DOI | MR

[22] P. A. Clarkson, C. M. Cosgrove, “Painlevé analysis of the non-linear Schrödinger family of equations”, J. Phys. A: Math. Gen., 20:8 (1987), 2003–2024 | DOI | MR

[23] S. Kakei, N. Sasa, J. Satsuma, “Bilinearization of a generalized derivative nonlinear Schrödinger equation”, J. Phys. Soc. Japan, 64:5 (1995), 1519–1523, arXiv: solv-int/9501005 | DOI | MR

[24] X. Lü, “Soliton behavior for a generalized mixed nonlinear Schrödinger model with $N$-fold Darboux transformation”, Chaos, 23:3 (2013), 033137, 8 pp. | DOI | MR

[25] B. Yang, J. C. Chen, J. K. Yang, “Rogue waves in the generalized derivative nonlinear Schrödinger equations”, J. Nonlinear Sci., 30:6 (2020), 3027–3056 | DOI | MR

[26] L. Wang, D.-Y. Jiang, F.-H. Qi, Y.-Y. Shi, Y.-C. Zhao, “Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model”, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 502–519 | DOI | MR

[27] X. Lü, M. S. Peng, “Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics”, Commun. Nonlinear Sci. Numer. Simulat., 18:9 (2013), 2304–2312 | DOI | MR

[28] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR

[29] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg-deVries equation”, Phys. Rev. Lett., 19:19 (1976), 1095–1097 | DOI

[30] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Korteweg–deVries equation and generalizations. VI. Methods for exact solution”, Commun. Pure Appl. Math., 27 (1974), 97–133 | DOI | MR

[31] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[32] M. J. Ablowitz, A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Univ. Press, Cambridge, 2003 | MR

[33] A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics, 78, SIAM, Philadelphia, PA, 2008 | DOI | MR

[34] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16, SIAM, Philadelphia, PA, 2010 | DOI | MR

[35] J. Yang, D. J. Kaup, “Squared eigenfunctions for the Sasa–Satsuma equation”, J. Math. Phys., 50:2 (2009), 023504, 21 pp., arXiv: 0902.1210 | DOI | MR

[36] D.-S. Wang, D.-J. Zhang, J. K. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations”, J. Math. Phys., 51:2 (2010), 023510, 17 pp. | DOI | MR

[37] B. L. Guo, L. M. Ling, “Riemann–Hilbert approach and $N$-soliton formula for coupled derivative Schrödinger equation”, J. Math. Phys., 53:7 (2012), 073506 | DOI | MR

[38] X. G. Geng, J. P. Wu, “Riemann–Hilbert approach and $N$-soliton solutions for a generalized Sasa–Satsuma equation”, Wave Motion, 60 (2016), 62–72 | DOI | MR

[39] Y. S. Zhang, Y. Cheng, J. S. He, “Riemann–Hilbert method and $N$-soliton for two-component Gerdjikov–Ivanov equation”, J. Nonlinear Math. Phys., 24:2 (2017), 210–223 | DOI | MR

[40] J. Hu, J. Xu, G.-F. Yu, “Riemann–Hilbert approach and $N$-soliton formula for a higher-order Chen–Lee–Liu equation”, J. Nonlinear Math. Phys., 25:4 (2018), 633–649 | DOI | MR

[41] L. Wen, N. Zhang, E. G. Fan, “$N$-soliton solution of the Kundu-type equation via Riemann–Hilbert approach”, Acta Math. Sci., 40:1 (2020), 113–126 | DOI | MR

[42] J. J. Yang, J. Y. Zhu, L. L. Wang, Dressing by regularization for the Gerdjikov–Ivanov equation and higher-order solitons, arXiv: 1504.03407