On the nonclassicality in quantum JT gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 317-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the question of classicality for the theory that is known to be an effective description of two-dimensional black holes—the Morse quantum mechanics. We calculate the Wigner function and the Fisher information characterizing the classicality/quantumness of single-particle systems and briefly discuss further directions to study.
Keywords: AdS/CFT correspondence, Jackiw–Teitelboim gravity.
@article{TMF_2022_210_2_a7,
     author = {D. S. Ageev and I. Ya. Aref'eva and A. V. Lysukhina},
     title = {On the~nonclassicality in quantum {JT} gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {317--328},
     year = {2022},
     volume = {210},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a7/}
}
TY  - JOUR
AU  - D. S. Ageev
AU  - I. Ya. Aref'eva
AU  - A. V. Lysukhina
TI  - On the nonclassicality in quantum JT gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 317
EP  - 328
VL  - 210
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a7/
LA  - ru
ID  - TMF_2022_210_2_a7
ER  - 
%0 Journal Article
%A D. S. Ageev
%A I. Ya. Aref'eva
%A A. V. Lysukhina
%T On the nonclassicality in quantum JT gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 317-328
%V 210
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a7/
%G ru
%F TMF_2022_210_2_a7
D. S. Ageev; I. Ya. Aref'eva; A. V. Lysukhina. On the nonclassicality in quantum JT gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 317-328. http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a7/

[1] S. Ryu, T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett., 96:18 (2006), 181602, 4 pp., arXiv: hep-th/0603001 | DOI | MR

[2] M. Van Raamsdonk, “Building up spacetime with quantum entanglement”, Gen. Rel. Grav., 42:10 (2010), 2323–2329 | DOI | MR

[3] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D, 86:6 (2012), 065007, 8 pp., arXiv: 0905.1317 | DOI

[4] E. D'Hoker, R. Jackiw, “Classical and quantal Liouville field theory”, Phys. Rev. D, 26:12 (1982), 3517–3542 | DOI | MR

[5] C. G. Callan Jr., S. B. Giddings, J. A. Harvey, A. Strominger, “Evanescent black holes”, Phys. Rev. D, 45:4 (1992), R1005–R1009, arXiv: hep-th/9111056 | DOI | MR

[6] A. Almheiri, N. Engelhardt, D. Marolf, H. Maxfield, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole”, JHEP, 12:12 (2019), 063, 46 pp., arXiv: 1905.08762 | DOI | MR

[7] J. Maldacena, D. Stanford, Z. Yang, “Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space”, Prog. Theor. Exp. Phys., 2016:12 (2016), 12C104, 26 pp., arXiv: 1606.01857 | DOI | MR

[8] T. G. Mertens, G. J. Turiaci, H. L. Verlinde, “Solving the Schwarzian via the conformal bootstrap”, JHEP, 08 (2017), 136, 57 pp., arXiv: 1705.08408 | DOI | MR

[9] T. G. Mertens, “The Schwarzian theory – origins”, JHEP, 05 (2018), 036, 45 pp., arXiv: 1801.09605 | DOI | MR

[10] S. Ghoshal, A. B. Zamolodchikov, “Boundary S matrix and boundary state in two-dimensional integrable quantum field theory”, Internat. J. Modern Phys. A, 9:21 (1994), 3841–3885 | DOI | MR

[11] H. Dorn, G. Jorjadze, “Boundary Liouville theory: Hamiltonian description and quantization”, SIGMA, 3 (2007), 012, 18 pp., arXiv: hep-th/0610197 | DOI | MR

[12] H. Dorn, G. Jorjadze, “Operator approach to boundary Liouville theory”, Ann. Phys., 323:11 (2008), 2799–2839, arXiv: 0801.3206 | DOI | MR

[13] S. Habib, “Classical limit in quantum cosmology: Quantum mechanics and the Wigner function”, Phys. Rev. D, 42:8 (1990), 2566–2576 | DOI

[14] S. Habib, R. Laflamme, “Wigner function and decoherence in quantum cosmology”, Phys. Rev. D, 42:12 (1990), 4056–4065 | DOI | MR

[15] C. Gómez, R. Jimenez, “Model independent prediction of the spectral index of primordial quantum fluctuations”, JCAP, 10 (2021), 052, 22 pp., arXiv: 2103.10144 | DOI

[16] C. Gómez, R. Jimenez, “Quantum Fisher cosmology: Confronting observations and the trans-Planckian problem”, JCAP, 09 (2021), 016, 20 pp., arXiv: 2105.05251 | DOI

[17] S. Chatterjee, G. A. Sekh, B. Talukdar, “Fisher information for the Morse oscillator”, Rep. Math. Phys., 85:2 (2020), 281–291 | DOI | MR

[18] H.-W. Lee, M. O. Scully, “Wigner phase-space description of a Morse oscillator”, J. Chem. Phys., 77:9 (1982), 4604–4610 | DOI | MR

[19] J. Weinbub, D. K. Ferry, “Recent advances in Wigner function approaches”, Appl. Phys. Rev., 5:4 (2018), 041104, 25 pp. | DOI

[20] A. Kenfack, K. .{Z}yczkowski, “Negativity of the Wigner function as an indicator of non-classicality”, J. Opt. B Quantum Semiclass. Opt., 6:10 (2004), 396–404, arXiv: quant-ph/0406015 | DOI | MR

[21] B. Roy Frieden, “Fisher information as the basis for the Schrödinger wave equation”, Amer. J. Phys., 57:11 (1989), 1004–1008 | DOI | MR

[22] B. Roy Frieden, Physics from Fisher Information. A Unification, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR

[23] M. J. W. Hall, “Quantum properties of classical Fisher information”, Phys. Rev. A, 62:1 (2000), 012107, 6 pp., arXiv: quant-ph/9912055 | DOI | MR

[24] H. De Raedt, M. I. Katsnelson, K. Michielsen, “Quantum theory as the most robust description of reproducible experiments”, Ann. Phys., 347 (2014), 45–73, arXiv: 1303.4574 | DOI

[25] D. Bagrets, A. Altland, A. Kamenev, “Sachdev–Ye–Kitaev model as Liouville quantum mechanics”, Nucl. Phys. B, 911 (2016), 191–205, arXiv: 1607.00694 | DOI

[26] V. V. Belokurov, E. T. Shavgulidze, “Exact solution of the Schwarzian theory”, Phys. Rev. D, 96:10 (2017), 101701, 3 pp., arXiv: 1705.02405 | DOI | MR

[27] V. V. Belokurov, E. T. Shavgulidze, “Schwarzian functional integrals calculus”, J. Phys. A: Math. Theor., 53:48 (2020), 485201, 23 pp., arXiv: 1908.10387 | DOI | MR

[28] M. V. Berry, “Semi-classical mechanics in phase space: a study of Wigner function”, Philos. Trans. Roy. Soc. London Ser. A, 287:1343 (1977), 237–271 | DOI | MR

[29] P. Caputa, S. Hirano, “Airy function and 4d quantum gravity”, JHEP, 06 (2018), 106, 16 pp., arXiv: 1804.00942 | DOI | MR

[30] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, “Distance between quantum states and gauge-gravity duality”, Phys. Rev. Lett., 115:26 (2015), 261602, 5 pp., arXiv: 1507.07555 | DOI

[31] S. Banerjee, J. Erdmenger, D. Sarkar, “Connecting Fisher information to bulk entanglement in holography”, JHEP, 08 (2018), 001, 23 pp., arXiv: 1701.02319 | DOI | MR

[32] J. Erdmenger, K. T. Grosvenor, R. Jefferson, “Information geometry in quantum field theory: lessons from simple examples”, SciPost Phys., 8:5 (2020), 073, 31 pp., arXiv: 2001.02683 | DOI | MR

[33] I. Aref'eva, I. Volovich, “Gas of baby universes in JT gravity and matrix models”, Symmetry, 12:6 (2020), 975, 17 pp., arXiv: 1905.08207 | DOI