@article{TMF_2022_210_2_a5,
author = {A. P. Isaev and A. A. Provorov},
title = {Split {Casimir} operator and solutions of {the~Yang{\textendash}Baxter} equation for the~$osp(M|N)$ and $s\ell(M|N)$ {Lie} superalgebras, higher {Casimir} operators, and {the~Vogel} parameters},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {259--301},
year = {2022},
volume = {210},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a5/}
}
TY - JOUR AU - A. P. Isaev AU - A. A. Provorov TI - Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 259 EP - 301 VL - 210 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a5/ LA - ru ID - TMF_2022_210_2_a5 ER -
%0 Journal Article %A A. P. Isaev %A A. A. Provorov %T Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 259-301 %V 210 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a5/ %G ru %F TMF_2022_210_2_a5
A. P. Isaev; A. A. Provorov. Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 259-301. http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a5/
[1] S. Okubo, “Casimir invariants and vector operators in simple and classical Lie algebras”, J. Math. Phys., 18:12 (1977), 2382–2394 | DOI
[2] V. Chari, A. N. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR
[3] Z. Ma, Yang–Baxter Equation and Quantum Enveloping Algebras, Advanced Series on Theoretical Physical Science, 1, World Sci., Singapore, 1993 | MR
[4] A. N. Sergeev, “Tenzornaya algebra tozhdestvennogo predstavleniya kak modul nad superalgebrami Li $\mathfrak Gl(n,m)$ i $Q(n)$”, Matem. sb., 123(165):3 (1984), 422–430 | DOI | MR | Zbl
[5] A. Berele, A. Regev, “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras”, Adv. Math., 62:2 (1987), 118–175 | DOI | MR
[6] M. Ehrig, C. Stroppel, “Schur–Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra”, Math. Z., 284:1–2 (2016), 595–613 | DOI | MR
[7] P. Vogel, The universal Lie algebra, Preprint, Université Paris, 1999,\par http://www.math.jussieu.fr/<nobr>$\sim$</nobr>vogel/A299.ps.gz
[8] P. Deligne, “La serie exceptionnelle des groupes de Lie”, C. R. Acad. Sci. Paris Sér. I, 322:4 (1996), 321–326 | MR | Zbl
[9] J. M. Landsberg, L. Manivel, “Triality, exceptional Lie algebras and Deligne dimension formulas”, Adv. Math., 171:1 (2002), 59–85 | DOI | MR
[10] R. L. Mkrtchyan, A. N. Sergeev, A. P. Veselov, “Casimir eigenvalues for universal Lie algebra”, J. Math. Phys., 53:10 (2012), 102106, 7 pp. | DOI | MR
[11] J. M. Landsberg, L. Manivel, “A universal dimension formula for complex simple Lie algebras”, Adv. Math., 201:2 (2006), 379–407 | DOI | MR
[12] M. Y. Avetisyan, R. L. Mkrtchyan, “$X_2$ series of universal quantum dimensions”, J. Phys. A: Math. Theor., 53:4 (2020), 045202, 28 pp. | DOI | MR
[13] A. Mironov, R. Mkrtchyan, A. Morozov, “On universal knot polynomials”, JHEP, 02 (2016), 078, 34 pp., arXiv: 1510.05884 | DOI | MR
[14] A. Mironov, A. Morozov, “Universal Racah matrices and adjoint knot polynomials: Arborescent knots”, Phys. Lett. B, 755 (2016), 47–57, arXiv: 1511.09077 | DOI | MR
[15] A. P. Isaev, S. O. Krivonos, “Split Casimir operator for simple Lie algebras, solutions of Yang–Baxter equations and Vogel parameters”, J. Math. Phys., 62:8 (2021), 083503, 33 pp., arXiv: 2102.08258 | DOI | MR
[16] A. P. Isaev, A. A. Provorov, “Proektory na invariantnye podprostranstva predstavlenii $\operatorname{ad}^{\otimes 2}$ algebr Li $so(N)$ i $sp(2r)$ i parametrizatsiya Vozhelya”, TMF, 206:1 (2021), 3–22 | DOI | DOI | MR
[17] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR
[18] F. A. Berezin, Vvedenie v algebru i analiz ot antikommutiruyuschikh peremennykh, Izd-vo Mosk. un-ta, M., 1983 | MR
[19] J. Fuksa, A. P. Isaev, D. Karakhanyan, R. Kirschner, “Yangians and Yang–Baxter R-operators for ortho-symplectic superalgebras”, Nucl. Phys. B, 917 (2017), 44–85, arXiv: 1612.04713 | DOI | MR
[20] A. P. Isaev, D. Karakhanyan, R. Kirschner, “Yang–Baxter $R$-operators for $osp$ superalgebras”, Nucl. Phys. B, 965 (2021), 115355, 28 pp., arXiv: 2009.08143 | DOI | MR
[21] V. G. Kac, “A sketch of Lie superalgebra theory”, Commun. Math. Phys., 53:1 (1977), 31–64 | DOI | MR
[22] F. A. Berezin, Introduction to Superanalysis, Mathematical Physics and Applied Mathematics, 9, Springer, Dordrecht, 1987 | DOI | MR
[23] L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie Algebras and Superalgebras, Academic Press, London, 2000 | MR
[24] L. Frappat, A. Sciarrino, P. Sorba, “Structure of basic Lie superalgebras and of their affine extensions”, Commun. Math. Phys., 121:3 (1989), 457–500 | DOI | MR
[25] P. Cvitanović, Group Theory. Birdtracks, Lie's, and Exceptional Groups, Princeton Univ. Press, Princeton, 2008 | DOI
[26] A. P. Isaev, V. A. Rubakov, Teoriya grupp i simmetrii, Kniga 2: Predstavleniya grupp Li i algebr Li. Prilozheniya, URSS (Krasand), M., 2020 | MR
[27] P. P. Kulish, E. K. Sklyanin, “O resheniyakh uravneniya Yanga–Bakstera”, Zap. nauchn. sem. LOMI, 95 (1980), 129–160 | DOI | MR | Zbl
[28] A. P. Isaev, Quantum groups and Yang–Baxter equations, Preprint MPI 2004-132, Max-Plank-Institut für Mathematik, Bonn, 2004, \par http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf
[29] V. G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory”, Lie Theory and Geometry, Progress in Mathematics, 123, eds. J.-L. Brylinski, R. Brylinski, V. Guillemin, V. Kac, Birkhäuser, Boston, MA, 1994, 415–456 | MR
[30] A. P. Isaev, V. A. Rubakov, Teoriya grupp i simmetrii, Kniga I: Konechnye gruppy. Gruppy i algebry Li, URSS (Krasand), M., 2018 | MR