Keywords: propagator, quantum.
@article{TMF_2022_210_2_a3,
author = {S. Sungted and S. Yoo-Kong},
title = {The~multi-time propagators and the~consistency condition},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {229--249},
year = {2022},
volume = {210},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a3/}
}
S. Sungted; S. Yoo-Kong. The multi-time propagators and the consistency condition. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 229-249. http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a3/
[1] P. A. M. Dirac, “Relativistic quantum mechanics”, Proc. Roy. Soc. London Ser. A, 136:829 (1932), 453–464 | DOI
[2] L. Nickel, On the dynamics of multi-time systems, Dissertation an der Fakultät für Mathematik, Informatik und Statistik, München, Ludwig Maximilians Universität, 2019
[3] D. A. Deckert, L. Nickel, “Consistency of multi-time Dirac equations with general interaction potentials”, J. Math. Phys., 57:7 (2016), 072301, 14 pp., arXiv: 1603.02538 | DOI | MR
[4] S. P. Petrat, Evolution equations for multi-time wave functions, Master's thesis, Rutgers, State University of New Jersey, New Brunswick, NJ, 2010
[5] S. Petrat, R. Tumulka, “Multi-time Schrödinger equations cannot contain interaction potentials”, J. Math. Phys., 55:3, 032302, 34 pp., arXiv: 1308.1065 | DOI | MR
[6] S. Petrat, R. Tumulka, “Multi-time equations, classical and quantum”, Proc. Roy. Soc. Lond. Ser. A, 470:2164 (2014), 20130632, 6 pp. | DOI | MR
[7] S. Petrat, R. Tumulka, “Multi-time wave functions for quantum field theory”, Ann. Phys., 345 (2014), 17–54, arXiv: 1309.0802 | DOI | MR
[8] S. Petrat, R. Tumulka, “Multi-time formulation of pair creation”, J. Phys. A: Math. Theor., 47:11 (2014), 112001, 11 pp., arXiv: 1401.6093 | DOI | MR
[9] M. Lienert, S. Petrat, R. Tumulka, “Multi-time wave functions”, J. Phys.: Conf. Ser., 880 (2014), 012006, 17 pp. | DOI
[10] G. Longhi, L. Lusanna, J. M. Pons, “On the many-time formulation of classical particle dynamics”, J. Math. Phys., 30:8 (1989), 1893–1912 | DOI | MR
[11] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading, MA, 1994
[12] S. Tomonaga, “On a relativistically invariant formulation of the quantum theory of wave fields”, Progr. Theor. Phys., 1:2 (1946), 27–42 | DOI | MR
[13] S. Lill, L. Nickel, R. Tumulka, “Consistency proof for multi-time Schrödinger equations with particle creation and ultraviolet cut-off”, Ann. H. Poincaré, 22:6 (2021), 1887–1936 | DOI | MR
[14] S. Yoo-Kong, S. Lobb, F. Nijhoff, “Discrete-time Calogero–Moser system and Lagrangian 1-form structure”, J. Phys. A: Math. Theor., 44:36 (2011), 365203, 39 pp. | DOI | MR
[15] J. P. Fortney, A Visual Introduction to Differential Forms and Calculus on Manifolds, Birkhäuser, Cham, 2018 | DOI | MR
[16] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | Zbl
[17] D. Walter, R. Martin, Classical and Quantum Dynamics: From Classical Paths to Path Integrals, Springer Nature Switzerland, Cham, 2020 | DOI
[18] S. D. King, F. W. Nijhoff, “Quantum variational principle and quantum multiform structure: The case of quadratic Lagrangians”, Nucl. Phys. B, 947 (2017), 114686, 39 pp. | DOI | MR