The multi-time propagators and the consistency condition
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 229-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a nonrelativistic quantum system of $N$ particles, the wave function is a function of $3N$ spatial coordinates and one temporal coordinate. The relativistic generalization of this wave function is a function of $N$ time variables known as the multitime wave function, and its evolution is described by $N$ Schrödinger equations, one for each time variable. To guarantee the existence of a nontrivial common solution of these $N$ equations, the $N$ Hamiltonians must satisfy a compatibility condition known as the integrability condition. In this work, the integrability condition is expressed in terms of Lagrangians. The time evolution of a wave function with $N$ time variables is derived in Feynman's picture of quantum mechanics. However, these evolutions are compatible if and only if the $N$ Lagrangians satisfy a certain relation called the consistency condition, which can be expressed in terms of Wilson line. As a consequence of this consistency condition, the evolution of the wave function gives rise to a key feature called the “path-independence” property on the space of time variables. This suggests that one must consider all possible paths not only on the space of dependent variables (spatial variables) but also on the space of independent variables (temporal variables). Geometrically, this consistency condition can be regarded as a zero-curvature condition and the multitime evolutions can be treated as compatible parallel transport processes on the flat space of time variables.
Mots-clés : multitime
Keywords: propagator, quantum.
@article{TMF_2022_210_2_a3,
     author = {S. Sungted and S. Yoo-Kong},
     title = {The~multi-time propagators and the~consistency condition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--249},
     year = {2022},
     volume = {210},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a3/}
}
TY  - JOUR
AU  - S. Sungted
AU  - S. Yoo-Kong
TI  - The multi-time propagators and the consistency condition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 229
EP  - 249
VL  - 210
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a3/
LA  - ru
ID  - TMF_2022_210_2_a3
ER  - 
%0 Journal Article
%A S. Sungted
%A S. Yoo-Kong
%T The multi-time propagators and the consistency condition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 229-249
%V 210
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a3/
%G ru
%F TMF_2022_210_2_a3
S. Sungted; S. Yoo-Kong. The multi-time propagators and the consistency condition. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 229-249. http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a3/

[1] P. A. M. Dirac, “Relativistic quantum mechanics”, Proc. Roy. Soc. London Ser. A, 136:829 (1932), 453–464 | DOI

[2] L. Nickel, On the dynamics of multi-time systems, Dissertation an der Fakultät für Mathematik, Informatik und Statistik, München, Ludwig Maximilians Universität, 2019

[3] D. A. Deckert, L. Nickel, “Consistency of multi-time Dirac equations with general interaction potentials”, J. Math. Phys., 57:7 (2016), 072301, 14 pp., arXiv: 1603.02538 | DOI | MR

[4] S. P. Petrat, Evolution equations for multi-time wave functions, Master's thesis, Rutgers, State University of New Jersey, New Brunswick, NJ, 2010

[5] S. Petrat, R. Tumulka, “Multi-time Schrödinger equations cannot contain interaction potentials”, J. Math. Phys., 55:3, 032302, 34 pp., arXiv: 1308.1065 | DOI | MR

[6] S. Petrat, R. Tumulka, “Multi-time equations, classical and quantum”, Proc. Roy. Soc. Lond. Ser. A, 470:2164 (2014), 20130632, 6 pp. | DOI | MR

[7] S. Petrat, R. Tumulka, “Multi-time wave functions for quantum field theory”, Ann. Phys., 345 (2014), 17–54, arXiv: 1309.0802 | DOI | MR

[8] S. Petrat, R. Tumulka, “Multi-time formulation of pair creation”, J. Phys. A: Math. Theor., 47:11 (2014), 112001, 11 pp., arXiv: 1401.6093 | DOI | MR

[9] M. Lienert, S. Petrat, R. Tumulka, “Multi-time wave functions”, J. Phys.: Conf. Ser., 880 (2014), 012006, 17 pp. | DOI

[10] G. Longhi, L. Lusanna, J. M. Pons, “On the many-time formulation of classical particle dynamics”, J. Math. Phys., 30:8 (1989), 1893–1912 | DOI | MR

[11] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading, MA, 1994

[12] S. Tomonaga, “On a relativistically invariant formulation of the quantum theory of wave fields”, Progr. Theor. Phys., 1:2 (1946), 27–42 | DOI | MR

[13] S. Lill, L. Nickel, R. Tumulka, “Consistency proof for multi-time Schrödinger equations with particle creation and ultraviolet cut-off”, Ann. H. Poincaré, 22:6 (2021), 1887–1936 | DOI | MR

[14] S. Yoo-Kong, S. Lobb, F. Nijhoff, “Discrete-time Calogero–Moser system and Lagrangian 1-form structure”, J. Phys. A: Math. Theor., 44:36 (2011), 365203, 39 pp. | DOI | MR

[15] J. P. Fortney, A Visual Introduction to Differential Forms and Calculus on Manifolds, Birkhäuser, Cham, 2018 | DOI | MR

[16] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | Zbl

[17] D. Walter, R. Martin, Classical and Quantum Dynamics: From Classical Paths to Path Integrals, Springer Nature Switzerland, Cham, 2020 | DOI

[18] S. D. King, F. W. Nijhoff, “Quantum variational principle and quantum multiform structure: The case of quadratic Lagrangians”, Nucl. Phys. B, 947 (2017), 114686, 39 pp. | DOI | MR