Multisoliton and rational solutions for the extended fifth-order KdV equation in fluids with self-consistent sources
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 213-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the high-order restricted flows of the extended fifth-order KdV (efKdV) equation, the efKdV equation with self-consistent sources (efKdVESCS) is presented and its Lax pair is constructed. Two types of $N$th Darboux transformations for the efKdVESCS are constructed. By using Darboux transformations, some types of solutions including one-soliton, two-soliton, and rational solution are explicitly obtained.
Keywords: extended fifth-order KdV equation with self-consistent sources, restricted flow
Mots-clés : Darboux transformation, multisoliton, rational solution.
@article{TMF_2022_210_2_a2,
     author = {F. Li and Yuqin Yao},
     title = {Multisoliton and rational solutions for the~extended fifth-order {KdV} equation in fluids with self-consistent sources},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--228},
     year = {2022},
     volume = {210},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a2/}
}
TY  - JOUR
AU  - F. Li
AU  - Yuqin Yao
TI  - Multisoliton and rational solutions for the extended fifth-order KdV equation in fluids with self-consistent sources
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 213
EP  - 228
VL  - 210
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a2/
LA  - ru
ID  - TMF_2022_210_2_a2
ER  - 
%0 Journal Article
%A F. Li
%A Yuqin Yao
%T Multisoliton and rational solutions for the extended fifth-order KdV equation in fluids with self-consistent sources
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 213-228
%V 210
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a2/
%G ru
%F TMF_2022_210_2_a2
F. Li; Yuqin Yao. Multisoliton and rational solutions for the extended fifth-order KdV equation in fluids with self-consistent sources. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 213-228. http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a2/

[1] V. K. Mel'nikov, “Wave emission and absorption in a nonlinear integrable system”, Phys. Lett. A, 118:1 (1986), 22–24 | DOI | MR

[2] V. K. Mel'nikov, “A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the $x, y$ plane”, Commun. Math. Phys., 112:4 (1987), 639–652 | DOI | MR

[3] V. K. Mel'nikov, “Integration method of the Korteweg–de Vries equation with a self-consistent source”, Phys. Lett. A, 133:9 (1988), 493–496 | DOI | MR

[4] V. K. Mel'nikov, “Capture and confinement of solitons in nonlinear integrable systems”, Commun. Math. Phys., 120:3 (1989), 451–468 | DOI | MR

[5] G. U. Urazboev, A. B. Khasanov, “Integrirovanie uravneniya Kortevega–de Friza s samosoglasovannym istochnikom pri nachalnykh dannykh tipa “stupenki””, TMF, 129:1 (2001), 38–54 | DOI | DOI | MR | Zbl

[6] V. S. Shchesnovich, E. V. Doktorov, “Modified Manakov system with self-consistent source”, Phys. Lett. A, 213:1–2 (1996), 23–31 | DOI | MR

[7] V. K. Mel'nikov, “Interaction of solitary waves in the system described by the Kadomtsev–Petviashvili equation with a self-consistent source”, Commun. Math. Phys., 126:1 (1989), 201–215 | DOI | MR

[8] C. Claude, A. Latifi, J. Leon, “Nonlinear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32:12 (1991), 3321–3330 | DOI | MR

[9] R. Lin, H. Yao, Y. Zeng, “Restricted flows and the soliton equation with self-consistent sources”, SIGMA, 2 (2006), 096, 8 pp., arXiv: nlin.SI/0701003 | DOI | MR

[10] Y.-Q. Yao, Y.-H. Huang, Y.-B. Zeng, “The Qiao–Liu equation with self-consistent sources and its solutions”, Commun. Theor. Phys., 57:6 (2012), 909–913 | DOI | MR

[11] Y.-H. Huang, Y.-Q. Yao, Y.-B. Zeng, “On Camassa–Holm equation with self-consistent sources and its solutions”, Commun. Theor. Phys., 53:3 (2010), 403–412 | DOI

[12] Y. Zeng, W.-X. Ma, R. Lin, “Integration of the soliton hierarchy with self-consistent sources”, J. Math. Phys., 41:8 (2000), 5453–5489 | DOI | MR

[13] R. Lin, Y. Zeng, W.-X. Ma, “Solving the KdV hierarchy with self-consistent sources by inverse scattering method”, Phys. A, 291 (2001), 287–298 | DOI | MR

[14] S. Ye, Y. Zeng, “Integration of the modified Korteweg–de Vries hierarchy with an integral type of source”, J. Phys. A: Math. Gen., 35:21 (2002), L283–L291 | DOI | MR

[15] Y.-B. Zeng, Y.-J. Shao, W.-X. Ma, “Integral-type Darboux transformations for the mKdV hierarchy with self-consistent sources”, Commun. Theor. Phys., 38:6 (2002), 641–648 | DOI | MR

[16] Yu. B. Zeng, Yu. Zh. Shao, V. M. Khu, “Pozitonnye resheniya uravneniya Kortevega–de Friza s samosoglasovannymi istochnikami”, TMF, 137:2 (2003), 309–320 | DOI | DOI | MR | Zbl

[17] T. Xiao, Y. B. Zeng, “Generalized Darboux transformations for the KP equation with self-consistent sources”, J. Phys. A: Math. Gen., 37:28 (2004), 7143–7162, arXiv: nlin/0412070 | DOI | MR

[18] T. Xiao, Y. B. Zeng, “A new constrained mKP hierarchy and the generalized Darboux transformation for the mKP equation with self-consistent sources”, Phys. A, 353 (2005), 38–60, arXiv: nlin/0412066 | DOI

[19] V. B. Matveev, “Generalized Wronskian formula for solutions of the KdV equations: first applications”, Phys. Lett. A, 166:3–4 (1992), 205–208 | DOI | MR

[20] B. Guo, L. Ling, Q. P. Liu, “Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85:2 (2012), 026607, 9 pp., arXiv: 1108.2867 | DOI

[21] B. Guo, L. Ling, Q. P. Liu, “High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations”, Stud. Appl. Math., 130:4 (2013), 317–344 | DOI | MR

[22] Y. Nakamura, I. Tsukabayashi, “Observation of modified Korteweg–de Vries solitons in a multicomponent plasma with negative ions”, Phys. Rev. Lett., 52:26 (1984), 2356–2359 | DOI

[23] T. G. Talipova, E. N. Pelinovski, T. Köuts, “Kinematic characteristics of internal wave field in the Gotland deep of the Baltic Sea”, Oceanology, 38:1 (1998), 37–46

[24] H. Demiray, “Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves”, Chaos Solitons Fractals, 42:1 (2009), 358–364 | DOI | MR

[25] Y. Kodama, “On integrable systems with higher-order corrections”, Phys. Lett. A, 107:6 (1985), 245–249 | DOI | MR

[26] A. S. Fokas, Q. M. Liu, “Asymptotic integrability of water waves”, Phys. Rev. Lett., 77:12 (1996), 2347–2351 | DOI | MR

[27] T. R. Marchant, “Solitary wave interaction for the extended BBM equation”, Proc. Roy. Soc. London Ser. A, 456:1994 (2000), 433–453 | DOI | MR

[28] P. Wang, B. Tian, W.-J. Liu, Q.-X. Qu, M. Li, K. Sun, “Lax pair, conservation laws and $N$-soliton solutions for the extended Korteweg–de Vries equations in fluids”, Eur. Phys. D, 61:3 (2011), 701–708 | DOI

[29] G.-Q. Meng, Y.-T. Gao, D.-W. Zuo, Y.-J. Shen, Y.-H. Sun, X. Yu, “Multi-soliton and rational solutions for the extended fifth-order KdV equation in fluids”, Z. Naturforsch. A, 70:7 (2015), 559–566 | DOI

[30] Gui-qiong Xu, Shu-fang Deng, “The integrability of an extended fifth-order KdV equation in $2+1$ dimensions: Painlevé property, Lax pair, conservation laws, and soliton interactions”, Z. Naturforsch. A, 10 (2016), 501–509 | DOI