Mots-clés : loop soliton solution.
@article{TMF_2022_210_2_a1,
author = {Min Xue and Hui Mao},
title = {B\"acklund transformation and applications for {the~Vakhnenko} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {199--212},
year = {2022},
volume = {210},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a1/}
}
Min Xue; Hui Mao. Bäcklund transformation and applications for the Vakhnenko equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 199-212. http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a1/
[1] V. A. Vakhnenko, “Solitons in a nonlinear model medium”, J. Phys. A: Math. Gen., 25:15 (1992), 4181–4187 | DOI | MR
[2] A. N. W. Hone, J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equations”, Inverse Problems, 19:1 (2003), 129–145 | DOI | MR
[3] A. N. W. Hone, V. Novikov, J. P. Wang, “Generalizations of the short pulse equation”, Lett. Math. Phys., 108:4 (2018), 927–947, arXiv: 1612.02481 | DOI | MR
[4] Yu. A. Stepanyants, “On stationary solutions of the reduced Ostrovsky equation: Periodic waves, compactons and compound solitons”, Chaos Solitons Fractals, 28:1 (2006), 193–204 | DOI | MR
[5] B.-F. Feng, K. Maruno, Y. Ohta, “Integrable semi-discretizations of the reduced Ostrovsky equation”, J. Phys. A: Math. Theor., 48:13 (2015), 135203, 20 pp., arXiv: 1502.03891 | DOI | MR
[6] V. O. Vakhnenko, E. J. Parkes, “The two loop soliton solution of the Vakhnenko equation”, Nonlinearity, 11:6 (1998), 1457–1464 | DOI | MR
[7] A. J. Morrison, E. J. Parkes, V. O. Vakhnenko, “The $N$ loop soliton solution of the Vakhnenko equation”, Nonlinearity, 12:5 (1999), 1427–1437 | DOI | MR
[8] V. O. Vakhnenko, E. J. Parkes, “The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method”, Chaos Solitons Fractals, 13:9 (2002), 1819–1826 | DOI | MR
[9] A. Boutet de Monvel, D. Shepelsky, “The Ostrovsky–Vakhnenko equation by a Riemann–Hilbert approach”, J. Phys. A: Math. Theor., 48:3 (2014), 035204, 34 pp. | DOI | MR
[10] Nyan-Khua Li, Gai-Khua Van, Yun-Khuei Kuan, “Mnogosolitonnye resheniya uravneniya Degasperisa–Prochezi i ego korotkovolnovogo predela: podkhod preobrazovaniya Darbu”, TMF, 203:2 (2020), 205–219 | DOI | DOI
[11] E. J. Parkes, “The stability of solution of Vakhnenko's equation”, J. Phys. A: Math. Gen., 26:22 (1993), 6469–6475 | DOI | MR
[12] V. A. Vakhnenko, “High-frequency soliton-like waves in a relaxing medium”, J. Math. Phys., 40:4 (1999), 2011–2020 | DOI | MR
[13] V. O. Vakhnenko, E. J. Parkes, A. V. Michtchenko, “The Vakhnenko equation from the viewpoint of the inverse scattering method for the KdV equation”, Internat. J. Differ. Equ. Appl., 1:4 (2000), 429–449
[14] C. Rogers, W. F. Shadwick, Bäklund Transformation and Their Applications, Mathematics in Science and Engineering, 161, Academic Press, New York, 1982 | MR
[15] C. H. Gu, H. S. Hu, Z. X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Sci.-Tech. Publ., Shanghai, 2005
[16] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations, Cambridge Texts in Applied Mathematics, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR
[17] D. Levi, R. Benguria, “Bäcklund transformations and nonlinear differential difference equations”, Proc. Nat. Acad. Sci. USA, 77:9 (1980), 5025–5027 | DOI | MR
[18] Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR
[19] D. Levi, “Nonlinear differential difference equations as Bäcklund transformations”, J. Phys. A: Math. Gen., 14:5 (1981), 1083–1098 | DOI | MR
[20] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Texts in Applied Mathematics, 54, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR
[21] A. G. Rasin, J. Schiff, “The Gardner method for symmetries”, J. Phys. A: Math. Theor., 46:15 (2013), 155202, 15 pp. | DOI | MR
[22] A. G. Rasin, J. Schiff, “Bäcklund transformations for the Camassa–Holm equation”, J. Nonlinear Sci., 27:1 (2017), 45–69 | DOI | MR
[23] G. Wang, Q. P. Liu, H. Mao, “The modified Camassa–Holm equation: Bäcklund transformations and nonlinear superposition formulae”, J. Phys. A: Math. Theor., 53:29 (2020), 294003, 15 pp. | DOI | MR
[24] Khuei Mao, Gai-Khua Van, “Preobrazovanie Beklunda dlya uravneniya Degasperisa–Prochezi”, TMF, 203:3 (2020), 365–379 | DOI | DOI
[25] D. Levi, O. Ragnisco, “Non-isospectral deformations and Darboux transformations for the third-order spectral problem”, Inverse Problems, 4:3 (1988), 815–828 | DOI | MR
[26] S. B. Leble, N. V. Ustinov, “Third order spectral problems: reductions and Darboux transformations”, Inverse Problems, 10:3 (1994), 617–633 | DOI | MR