Diagonal reduction algebra for $\mathfrak{osp}(1|2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 179-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of providing complete presentations of reduction algebras associated to a pair of Lie algebras $(\mathfrak{G},\mathfrak{g})$ has previously been considered by Khoroshkin and Ogievetsky in the case of the diagonal reduction algebra for $\mathfrak{gl}(n)$. In this paper, we consider the diagonal reduction algebra of the pair of Lie superalgebras $(\mathfrak{G},\mathfrak{g})$ as a double coset space having an associative $\scriptstyle\lozenge$-product and give a complete presentation in terms of generators and relations. We also provide a PBW basis for this reduction algebra along with Casimir-like elements and a subgroup of automorphisms.
Keywords: reduction algebra, orthosymplectic Lie superalgebra, extremal projector, associative superalgebra.
Mots-clés : Zhelobenko algebra
@article{TMF_2022_210_2_a0,
     author = {J. T. Hartwig and D. A. Williams II},
     title = {Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--198},
     year = {2022},
     volume = {210},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/}
}
TY  - JOUR
AU  - J. T. Hartwig
AU  - D. A. Williams II
TI  - Diagonal reduction algebra for $\mathfrak{osp}(1|2)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 179
EP  - 198
VL  - 210
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/
LA  - ru
ID  - TMF_2022_210_2_a0
ER  - 
%0 Journal Article
%A J. T. Hartwig
%A D. A. Williams II
%T Diagonal reduction algebra for $\mathfrak{osp}(1|2)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 179-198
%V 210
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/
%G ru
%F TMF_2022_210_2_a0
J. T. Hartwig; D. A. Williams II. Diagonal reduction algebra for $\mathfrak{osp}(1|2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 179-198. http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/

[1] D. P. Zhelobenko, Predstavlenie reduktivnykh algebr Li, Nauka, M., 1994 | MR

[2] J. Mickelsson, “Step algebras of semi-simple subalgebras of Lie algebras”, Rep. Math. Phys., 4:4 (1973), 307–318 | DOI | MR

[3] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of Algebra, v. 4, eds. M. Hazewinkel, Elsevier, Amsterdam, 2006, 109–170 | DOI | MR

[4] P. I. Etingof, A. Varchenko, “Dynamical Weyl groups and applications”, Adv. Math., 167:1 (2002), 74–127 | DOI | MR

[5] V. Tarasov, A. Varchenko, “Difference equations compatible with trigonometric KZ differential equations”, Internat. Math. Res. Notices, 2000:15 (2000), 801–829 | DOI | MR

[6] H. De Bie, D. Eelbode, M. Roelsb, “The harmonic transvector algebra in two vector variables”, J. Algebra, 473 (2017), 247–282 | DOI | MR

[7] D. P. Zhelobenko, “Hypersymmetries of extremal equations”, Nova J. Theor. Phys., 5:4 (1997), 243–258 | MR

[8] S. Khoroshkin, O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319:5 (2008), 2113–2165 | DOI | MR

[9] S. Khoroshkin, O. Ogievetsky, “Rings of fractions of reduction algebras”, Algebr. Represent. Theory, 17:1 (2014), 265–274 | DOI | MR

[10] T. Ashton, A. Mudrov, “$R$-matrix and Mickelsson algebras for orthosymplectic quantum groups”, J. Math. Phys., 56:8 (2015), 081701, 8 pp., arXiv: 1410.6493 | DOI | MR

[11] T. Matsumoto, A. Molev, “Representations of centrally extended Lie superalgebra $\mathfrak{psl}(2|2)$”, J. Math. Phys., 55:9 (2014), 091704, 22 pp., arXiv: 1405.3420 | DOI | MR

[12] A. van den Hombergh, “A note on Mickelsson's step algebra”, Indag. Math., 78:1 (1975), 42–47 | DOI | MR

[13] D. P. Zhelobenko, “Ekstremalnye proektory i obobschennye algebry Mikelsona nad reduktivnymi algebrami Li”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 758–773 | DOI | MR | Zbl

[14] S. Khoroshkin, O. Ogievetsky, “Diagonal reduction algebra and the reflection equation”, Israel J. Math., 221:2 (2017), 705–729 | DOI | MR

[15] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR

[16] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Proektsionnye operatory dlya prostykh grupp Li. II. Obschaya skhema postroeniya ponizhayuschikh operatorov. Sluchai grupp $SU(n)$”, TMF, 15:1 (1973), 107–119 | DOI | MR | Zbl

[17] V. N. Tolstoi, “Ekstremalnye proektory dlya reduktivnykh klassicheskikh superalgebr Li s nevyrozhdennoi obobschennoi formoi Killinga”, UMN, 40:4(244) (1985), 225–226 | DOI | MR | Zbl

[18] F. A. Berezin, V. N. Tolstoy, “The group with Grassmann structure $UOSP(1.2)$”, Commun. Math. Phys., 78:3 (1981), 409–428 | DOI | MR

[19] L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie Algebras and Superalgebras, Academic Press, San Diego, CA, 2000 | MR

[20] I. M. Musson, Lie Superalgebras and Enveloping Algebras, Graduate Studies in Mathematics, 131, AMS, Providence, RI, 2012 | DOI | MR

[21] S.-J. Cheng, W. Wang, Dualities and Representations of Lie Superalgebras, Graduate Studies in Mathematics, 144, AMS, Providence, RI, 2012 | DOI | MR

[22] V. N. Tolstoy, “Extremal projectors for contragredient Lie (super)symmetries (Short review)”, YaF, 74:12 (2011), 1785–1795 | DOI

[23] T. Ferguson, Weight modules of orthosymplectic Lie superalgebras, PhD Thesis, University of Texas, Arlington, 2015 | MR

[24] D. A. Williams II, Bases of infinite-dimensional representations of orthosymplectic Lie superalgebras, PhD Thesis, The University of Texas, Arlington, 2020 | MR

[25] J. T. Hartwig, D. A. Williams II, Diagonal reduction algebra for $\mathfrak{osp}(1|2)$, arXiv: 2106.04380

[26] A. Lesniewski, “A remark on the Casimir elements of Lie superalgebras and quantized Lie superalgebras”, J. Math. Phys., 36:3 (1995), 1457–1461 | DOI | MR