Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 179-198
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of providing complete presentations of reduction algebras associated to a pair of Lie algebras $(\mathfrak{G},\mathfrak{g})$ has previously been considered by Khoroshkin and Ogievetsky in the case of the diagonal reduction algebra for $\mathfrak{gl}(n)$. In this paper, we consider the diagonal reduction algebra of the pair of Lie superalgebras $(\mathfrak{G},\mathfrak{g})$ as a double coset space having an associative $\scriptstyle\lozenge$-product and give a complete presentation in terms of generators and relations. We also provide a PBW basis for this reduction algebra along with Casimir-like elements and a subgroup of automorphisms.
Keywords:
reduction algebra, orthosymplectic Lie superalgebra, extremal projector, associative superalgebra.
Mots-clés : Zhelobenko algebra
Mots-clés : Zhelobenko algebra
@article{TMF_2022_210_2_a0,
author = {J. T. Hartwig and D. A. Williams II},
title = {Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--198},
publisher = {mathdoc},
volume = {210},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/}
}
TY - JOUR
AU - J. T. Hartwig
AU - D. A. Williams II
TI - Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2022
SP - 179
EP - 198
VL - 210
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/
LA - ru
ID - TMF_2022_210_2_a0
ER -
J. T. Hartwig; D. A. Williams II. Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 179-198. http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/