Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 179-198

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of providing complete presentations of reduction algebras associated to a pair of Lie algebras $(\mathfrak{G},\mathfrak{g})$ has previously been considered by Khoroshkin and Ogievetsky in the case of the diagonal reduction algebra for $\mathfrak{gl}(n)$. In this paper, we consider the diagonal reduction algebra of the pair of Lie superalgebras $(\mathfrak{G},\mathfrak{g})$ as a double coset space having an associative $\scriptstyle\lozenge$-product and give a complete presentation in terms of generators and relations. We also provide a PBW basis for this reduction algebra along with Casimir-like elements and a subgroup of automorphisms.
Keywords: reduction algebra, orthosymplectic Lie superalgebra, extremal projector, associative superalgebra.
Mots-clés : Zhelobenko algebra
@article{TMF_2022_210_2_a0,
     author = {J. T. Hartwig and D. A. Williams II},
     title = {Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--198},
     publisher = {mathdoc},
     volume = {210},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/}
}
TY  - JOUR
AU  - J. T. Hartwig
AU  - D. A. Williams II
TI  - Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 179
EP  - 198
VL  - 210
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/
LA  - ru
ID  - TMF_2022_210_2_a0
ER  - 
%0 Journal Article
%A J. T. Hartwig
%A D. A. Williams II
%T Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 179-198
%V 210
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/
%G ru
%F TMF_2022_210_2_a0
J. T. Hartwig; D. A. Williams II. Diagonal reduction algebra for~$\mathfrak{osp}(1|2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 2, pp. 179-198. http://geodesic.mathdoc.fr/item/TMF_2022_210_2_a0/