Keywords: Hermite polynomials, oscillator model, homogeneous external field.
@article{TMF_2022_210_1_a8,
author = {Sh. M. Nagiyev},
title = {On two direct limits relating {pseudo-Jacobi} polynomials to {Hermite} polynomials and {the~pseudo-Jacobi} oscillator in a~homogeneous gravitational field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {140--155},
year = {2022},
volume = {210},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a8/}
}
TY - JOUR AU - Sh. M. Nagiyev TI - On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 140 EP - 155 VL - 210 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a8/ LA - ru ID - TMF_2022_210_1_a8 ER -
%0 Journal Article %A Sh. M. Nagiyev %T On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 140-155 %V 210 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a8/ %G ru %F TMF_2022_210_1_a8
Sh. M. Nagiyev. On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 140-155. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a8/
[1] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, M., Nauka, 1984 | DOI | MR | MR | Zbl
[2] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | DOI | MR | MR | Zbl
[3] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, v. 3, Quantum Mechanics (Non-relativistic Theory), 3rd ed., 1977 | MR | MR
[4] R. Koekoek, P. A Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer, Berlin, Heidelberg, 2010 | DOI | MR
[5] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR
[6] E. I. Jafarov, A. M. Mammadova, J. Van der Jeugt, “On the direct limit from pseudo Jacobi polynomials to Hermite polynomials”, Mathematics, 9:1 (2021), 88, 8 pp. | DOI
[7] E. I. Jafarov, S. M. Nagiyev, R. Oste, J. Van der Jeugt, “Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter”, J. Phys. A: Math. Theor., 53:48 (2020), 485301, 14 pp. | DOI | MR
[8] J. W. Dabrowska, A. Khare, U. P. Sukhatme, “Explicit wavefunctions for shape-invariant potentials by operator techniques”, J. Phys. A: Math. Gen., 21:4 (1988), L195–L200 | DOI | MR
[9] G. Levai, “A search for shape-invariant solvable potentials”, J. Phys. A: Math. Gen., 22:6 (1989), 689–702 | DOI | MR
[10] D. J. BenDaniel, C. B. Duke, “Space-charge effects on electron tunneling”, Phys. Rev., 152:2 (1966), 683–692 | DOI
[11] O. von Roos, “Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 27:12 (1983), 7547–7552 | DOI
[12] J.-M. Lévy-Leblond, “Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, 52:3 (1995), 1845–1849 | DOI | MR
[13] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Les Edition de Physique, Paris, 1988
[14] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics, John Wiley and Sons, New York, 2000
[15] M. Barranco, M. Pi, S. M. Gatica, E. S. Hernández, J. Navarro, “Structure and energetics of mixed $^4$He–$^3$He drops”, Phys. Rev. B, 56:14 (1997), 8997–9003 | DOI
[16] F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini, “Effective mass of one $^4$He atom in liquid $^3$He”, Phys. Rev. B, 50:6 (1994), 4248–4251 | DOI
[17] T. Gora, F. Williams, “Theory of electronic states and transport in graded mixed semiconductors”, Phys. Rev., 177:3 (1969), 1179–1182 | DOI
[18] Q.-G. Zhu, H. Kroemer, “Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors”, Phys. Rev. B, 27:6 (1983), 3519–3527 | DOI
[19] A. R. Plastino, A. Rigo, M. Casas, F. Garcias, A. Plastino, “Supersymmetric approach to quantum systems with position-dependent effective mass”, Phys. Rev. A, 60:6 (1999), 4318–4325 | DOI
[20] Kh. Raibongshi, N. N. Singkh, “Postroenie tochno reshaemykh potentsialov v $D$-mernom uravnenii Shredingera s massoi, zavisyaschei ot koordinat, pri pomoschi metoda preobrazovanii”, TMF, 183:2 (2015), 312–328 | MR
[21] Kh. Raibongshi, “Tochno reshaemye potentsialy i resheniya dlya svyazannykh sostoyanii uravneniya Shredingera v $D$-mernom prostranstve s zavisyaschei ot koordinat massoi”, TMF, 184:1 (2015), 117–133 | MR
[22] N. Amir, S .Iqbal, “Algebraic solutions of shape-invariant position-dependent effective mass systems”, J. Math. Phys., 57:6 (2016), 062105 | DOI | MR
[23] B. Roy, “Lie algebraic approach to singular oscillator with a position-dependent mass”, Europhys. Lett., 72:1 (2005), 1–6 | DOI | MR
[24] J. Yu, S.-H. Dong, “Exactly solvable potentials for the Schrödinger equation with spatially dependent mass”, Phys. Lett. A, 325 (2004), 194–198 | DOI | MR
[25] J. R. F. Lima, M. Vieira, C. Furtado, F. Moraes, C. Filgueiras, “Yet another position-dependent mass quantum model”, J. Math. Phys., 53:7 (2012), 072101 | DOI | MR
[26] C. Quesne, V. M. Tkachuk, “Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37:14 (2004), 4267–4281, arXiv: math-ph/0403047 | DOI | MR
[27] J. F. Cariñena, M. F. Rañada, M. Santander, “Quantization of Hamiltonian systems with a position dependent mass: Killing vector fields and Noether momenta approach”, J. Phys. A: Math. Theor., 50:46 (2017), 465202, 20 pp. | DOI | MR
[28] E. I. Jafarov, S. M. Nagiyev, A. M. Jafarova, “Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator”, Rep. Math. Phys., 86:1 (2020), 25–37 | DOI | MR
[29] E. I. Dzhafarov, Sh. M. Nagiev, “Uglovaya chast uravneniya Shredingera dlya potentsiala Oto kak garmonicheskii ostsillyator s massoi, zavisyaschei ot koordinat, v odnorodnom gravitatsionnom pole”, TMF, 207:1 (2021), 58–71
[30] A. de Souza Dutra, A. de Oliveira, “Two-dimensional position-dependent massive particles in the presence of magnetic fields”, J. Phys. A: Math. Theor., 42:2 (2009), 025304, 13 pp. | DOI | MR