On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 140-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present two new limit relations that reduce the orthogonal pseudo-Jacobi polynomials directly to the Hermite polynomials with shifted and nonshifted arguments. The proofs of these limit relations are based on the method of mathematical induction. These limits open up the prospects for studying new exactly solvable harmonic oscillator models in homogeneous external fields in quantum mechanics in terms of pseudo-Jacobi polynomials. As an application of these limit relations, a model of a linear harmonic oscillator with a position-dependent mass in an external homogeneous gravitational field (a pseudo-Jacobi oscillator in an external field) is considered. The form of the generalized Hamiltonian for describing quantum mechanical systems with a position-dependent mass is presented.
Mots-clés : pseudo-Jacobi polynomials, limit relation
Keywords: Hermite polynomials, oscillator model, homogeneous external field.
@article{TMF_2022_210_1_a8,
     author = {Sh. M. Nagiyev},
     title = {On two direct limits relating {pseudo-Jacobi} polynomials to {Hermite} polynomials and {the~pseudo-Jacobi} oscillator in a~homogeneous gravitational field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {140--155},
     year = {2022},
     volume = {210},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a8/}
}
TY  - JOUR
AU  - Sh. M. Nagiyev
TI  - On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 140
EP  - 155
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a8/
LA  - ru
ID  - TMF_2022_210_1_a8
ER  - 
%0 Journal Article
%A Sh. M. Nagiyev
%T On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 140-155
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a8/
%G ru
%F TMF_2022_210_1_a8
Sh. M. Nagiyev. On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 140-155. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a8/

[1] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, M., Nauka, 1984 | DOI | MR | MR | Zbl

[2] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | DOI | MR | MR | Zbl

[3] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, v. 3, Quantum Mechanics (Non-relativistic Theory), 3rd ed., 1977 | MR | MR

[4] R. Koekoek, P. A Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer, Berlin, Heidelberg, 2010 | DOI | MR

[5] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[6] E. I. Jafarov, A. M. Mammadova, J. Van der Jeugt, “On the direct limit from pseudo Jacobi polynomials to Hermite polynomials”, Mathematics, 9:1 (2021), 88, 8 pp. | DOI

[7] E. I. Jafarov, S. M. Nagiyev, R. Oste, J. Van der Jeugt, “Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter”, J. Phys. A: Math. Theor., 53:48 (2020), 485301, 14 pp. | DOI | MR

[8] J. W. Dabrowska, A. Khare, U. P. Sukhatme, “Explicit wavefunctions for shape-invariant potentials by operator techniques”, J. Phys. A: Math. Gen., 21:4 (1988), L195–L200 | DOI | MR

[9] G. Levai, “A search for shape-invariant solvable potentials”, J. Phys. A: Math. Gen., 22:6 (1989), 689–702 | DOI | MR

[10] D. J. BenDaniel, C. B. Duke, “Space-charge effects on electron tunneling”, Phys. Rev., 152:2 (1966), 683–692 | DOI

[11] O. von Roos, “Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 27:12 (1983), 7547–7552 | DOI

[12] J.-M. Lévy-Leblond, “Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, 52:3 (1995), 1845–1849 | DOI | MR

[13] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Les Edition de Physique, Paris, 1988

[14] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics, John Wiley and Sons, New York, 2000

[15] M. Barranco, M. Pi, S. M. Gatica, E. S. Hernández, J. Navarro, “Structure and energetics of mixed $^4$He–$^3$He drops”, Phys. Rev. B, 56:14 (1997), 8997–9003 | DOI

[16] F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini, “Effective mass of one $^4$He atom in liquid $^3$He”, Phys. Rev. B, 50:6 (1994), 4248–4251 | DOI

[17] T. Gora, F. Williams, “Theory of electronic states and transport in graded mixed semiconductors”, Phys. Rev., 177:3 (1969), 1179–1182 | DOI

[18] Q.-G. Zhu, H. Kroemer, “Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors”, Phys. Rev. B, 27:6 (1983), 3519–3527 | DOI

[19] A. R. Plastino, A. Rigo, M. Casas, F. Garcias, A. Plastino, “Supersymmetric approach to quantum systems with position-dependent effective mass”, Phys. Rev. A, 60:6 (1999), 4318–4325 | DOI

[20] Kh. Raibongshi, N. N. Singkh, “Postroenie tochno reshaemykh potentsialov v $D$-mernom uravnenii Shredingera s massoi, zavisyaschei ot koordinat, pri pomoschi metoda preobrazovanii”, TMF, 183:2 (2015), 312–328 | MR

[21] Kh. Raibongshi, “Tochno reshaemye potentsialy i resheniya dlya svyazannykh sostoyanii uravneniya Shredingera v $D$-mernom prostranstve s zavisyaschei ot koordinat massoi”, TMF, 184:1 (2015), 117–133 | MR

[22] N. Amir, S .Iqbal, “Algebraic solutions of shape-invariant position-dependent effective mass systems”, J. Math. Phys., 57:6 (2016), 062105 | DOI | MR

[23] B. Roy, “Lie algebraic approach to singular oscillator with a position-dependent mass”, Europhys. Lett., 72:1 (2005), 1–6 | DOI | MR

[24] J. Yu, S.-H. Dong, “Exactly solvable potentials for the Schrödinger equation with spatially dependent mass”, Phys. Lett. A, 325 (2004), 194–198 | DOI | MR

[25] J. R. F. Lima, M. Vieira, C. Furtado, F. Moraes, C. Filgueiras, “Yet another position-dependent mass quantum model”, J. Math. Phys., 53:7 (2012), 072101 | DOI | MR

[26] C. Quesne, V. M. Tkachuk, “Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37:14 (2004), 4267–4281, arXiv: math-ph/0403047 | DOI | MR

[27] J. F. Cariñena, M. F. Rañada, M. Santander, “Quantization of Hamiltonian systems with a position dependent mass: Killing vector fields and Noether momenta approach”, J. Phys. A: Math. Theor., 50:46 (2017), 465202, 20 pp. | DOI | MR

[28] E. I. Jafarov, S. M. Nagiyev, A. M. Jafarova, “Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator”, Rep. Math. Phys., 86:1 (2020), 25–37 | DOI | MR

[29] E. I. Dzhafarov, Sh. M. Nagiev, “Uglovaya chast uravneniya Shredingera dlya potentsiala Oto kak garmonicheskii ostsillyator s massoi, zavisyaschei ot koordinat, v odnorodnom gravitatsionnom pole”, TMF, 207:1 (2021), 58–71

[30] A. de Souza Dutra, A. de Oliveira, “Two-dimensional position-dependent massive particles in the presence of magnetic fields”, J. Phys. A: Math. Theor., 42:2 (2009), 025304, 13 pp. | DOI | MR