Mots-clés : convergence condition
@article{TMF_2022_210_1_a7,
author = {Jun Yan},
title = {Functional integrals and phase stability properties in the~$O(N)$ vector field condensation model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {128--139},
year = {2022},
volume = {210},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/}
}
TY - JOUR AU - Jun Yan TI - Functional integrals and phase stability properties in the $O(N)$ vector field condensation model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 128 EP - 139 VL - 210 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/ LA - ru ID - TMF_2022_210_1_a7 ER -
Jun Yan. Functional integrals and phase stability properties in the $O(N)$ vector field condensation model. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 128-139. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/
[1] J. I. Kapusta, “Bose–Einstein condensation, spontaneous symmetry breaking, and gauge theories”, Phys. Rev. D, 24:2 (1981), 426–439 | DOI
[2] J. I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications, Cambridge Univ. Press, Cambridge, 2006 | DOI | MR
[3] S. Bornholdt, N. Tetradis, C. Wetterich, “Coleman–Weinberg phase transition in two-scalar models”, Phys. Lett. B, 348:1–2 (1994), 89–99, arXiv: hep-th/9408132
[4] S. Bornholdt, N. Tetradis, C. Wetterich, “High temperature phase transition in two-scalar theories”, Phys. Rev. D, 53:8 (1995), 4552–4569, arXiv: hep-ph/9503282 | DOI
[5] E. Babaev, L. D. Faddeev, A. J. Niemi, “Hidden symmetry and knot solitons in a charged two-condensate Bose system”, Phys. Rev. B, 65:10 (2001), 100512, 4 pp. | DOI
[6] E. Babaev, “Phase diagram of planar $U(1)\times U(1)$ superconductors: condensation of vortices with fractional flux and a superfluid state”, Nucl. Phys. B, 686:3 (2003), 397–412, arXiv: cond-mat/0201547 | DOI | MR
[7] I. R. Klebanov, A. M. Polyakov, “AdS dual of the critical $O(N)$ vector model”, Phys. Lett. B, 550:3–4 (2002), 213–219 | DOI | MR
[8] S. A. Hartnoll, S. P. Kumar, “The $O(N)$ model on a squashed $S^3$ and the Klebanov–Polyakov correspondence”, JHEP, 06 (2005), 012, 25 pp., arXiv: hep-th/0503238 | DOI | MR
[9] I. R. Klebanov, S. S. Pufu, B. R. Safdi, “$F$-theorem without supersymmetry”, JHEP, 10 (2011), 38, 26 pp., arXiv: 1105.4598 | DOI | MR
[10] S. Giombi, I. R. Klebanov, “Interpolating between $a$ and $F$ ”, JHEP, 03 (2015), 117, 34 pp. | DOI | MR
[11] J. Fröhlich, A. Mardin, V. Rivasseau, “Borel summability of the $1/N$ expansion for the $N$-vector [$O(N)$ nonlinear $\sigma$] models”, Commun. Math. Phys., 86:1 (1982), 87–110 | DOI | MR
[12] G. 't Hooft, “On the convergence of planar diagram expansions”, Commun. Math. Phys., 86:4 (1982), 449–464 | DOI | MR
[13] Y. Chen, Y. Zhu, “Convergence of the variational cumulant expansion”, Commun. Theor. Phys., 28:2 (1997), 241–244 | DOI
[14] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR
[15] Y. Guo, R. Seiringer, “On the mass concentration for Bose–Einstein condensate with attractive interaction”, Lett. Math. Phys., 104:2 (2014), 141–156 | DOI | MR
[16] B.-R. Zhou, “Interplay between quark-antiquark and diquark condensates in vacuum in a two-flavor Nambu–Jona–Lasinio model”, Commun. Theor. Phys., 47:1 (2007), 95–101, arXiv: hep-th/0703059 | DOI
[17] L. C. L. Botelho, Methods of Bosonic and Fermionic Path Integrals Representations: Continuum Random Geometry in Quantum Field Theory, Nova Sci., New York, 2009
[18] M. Moshe, J. Zinn-Justin, “Quantum field theory in the large $N$ limit: a review”, Phys. Rep., 385:3–6 (2003), 69–228, arXiv: hep-th/0306133 | DOI | MR
[19] A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge Univ. Press, Cambridge, 2003 | MR
[20] J. Yan, B.-L. Li, “Functional integrals and convergence of partition function in sine-Gordon–Thirring model”, Lett. Math. Phys., 104:2 (2014), 233–242 | DOI | MR
[21] J. Yan, “Functional integrals and phase structures in sine-Gordon–Thirring model”, Modern Phys. Lett. B, 26:27 (2012), 1250178, 7 pp. | DOI | MR
[22] N. E. Bogdanova, V. N. Popov, “Dvumernaya teoriya polya s neskolkimi kondensirovannymi fazami”, TMF, 46:3 (1981), 325–334 | DOI
[23] P. N. Brusov, P. P. Brusov, Collective Excitations in Unconventional Superconductors and Superfluids, World Sci., Singapore, 2010 | DOI
[24] V. S. Yarunin, L. A. Siurakshina, “Branch structure of the Bose-condensate excitations spectrum”, Phys. A, 215:3 (1995), 261–269 | DOI
[25] M. Dilaver, P. Rossi, Y. Gündüç, “Scaling contributions to the free energy in the $1/N$ expansion of $O(N)$ nonlinear sigma models in $d$-dimensions”, Phys. Lett. B, 420:3–4 (1998), 314–318 | DOI
[26] J. O. Andersen, D. Boer, H. J. Warringa, “Thermodynamics of the $O(N)$ nonlinear sigma model in $1+1$ dimensions”, Phys. Rev. D, 69:7 (2004), 076006, 8 pp., arXiv: hep-ph/0309091 | DOI
[27] A. O. Sorokin, “Perekhod slabogo pervogo roda i psevdoskeilingovoe povedenie v klasse universalnosti Izing-$O(N)$ modeli”, TMF, 200:2 (2019), 310–323 | DOI | DOI | MR
[28] J. Yan, “Functional integrals and $1/h$ expansion in the boson-fermion model”, Phys. A, 452 (2016), 145–150 | DOI | MR
[29] D. Baranov, V. Yarunin, “${}^4$He spectrum shift caused by ${}^3$He admixture”, Phys. A, 269:2–4 (1999), 222–234 | DOI
[30] B.-X. Zou, J. Yan, J.-G. Li, W.-J. Su, “Functional integrals and energy density fluctuations on black hole background”, Gen. Rel. Grav., 43:1 (2011), 305–314 | DOI | MR
[31] J. Yan, “Functional integrals and correlation functions in the sine-Gordon–Thirring model with gravity correction”, Gravit. Cosmol., 23:1 (2017), 45–49 | DOI | MR