Functional integrals and phase stability properties in the~$O(N)$ vector field condensation model
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 128-139
Voir la notice de l'article provenant de la source Math-Net.Ru
Using condensation of auxiliary Bose fields and the functional integral method, we derive an effective action of the binary $O(N)$ vector field model on a sphere. We analyze two models with different forms of the coupling constants: the binary field model on $S^3$ and the two-component vector field model on $S^d$. In both models, we obtain the convergence conditions for the partition function from the traces of a free propagator. From analytic solutions of the saddle-point equations, we derive phase stability conditions, which imply that the system allows the formation of coexisting condensates when the condensate densities of the complex Bose fields and the unit vector field satisfy a certain constraint. In addition, within the $1/N$ expansion of the free energy on $S^d$, we also find that the absolute value of free energy decreases as the dimension $d$ increases.
Keywords:
functional integral, phase stability condition, $O(N)$ condensation model.
Mots-clés : convergence condition
Mots-clés : convergence condition
@article{TMF_2022_210_1_a7,
author = {Jun Yan},
title = {Functional integrals and phase stability properties in the~$O(N)$ vector field condensation model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {128--139},
publisher = {mathdoc},
volume = {210},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/}
}
TY - JOUR AU - Jun Yan TI - Functional integrals and phase stability properties in the~$O(N)$ vector field condensation model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 128 EP - 139 VL - 210 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/ LA - ru ID - TMF_2022_210_1_a7 ER -
Jun Yan. Functional integrals and phase stability properties in the~$O(N)$ vector field condensation model. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 128-139. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/