Functional integrals and phase stability properties in the $O(N)$ vector field condensation model
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 128-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using condensation of auxiliary Bose fields and the functional integral method, we derive an effective action of the binary $O(N)$ vector field model on a sphere. We analyze two models with different forms of the coupling constants: the binary field model on $S^3$ and the two-component vector field model on $S^d$. In both models, we obtain the convergence conditions for the partition function from the traces of a free propagator. From analytic solutions of the saddle-point equations, we derive phase stability conditions, which imply that the system allows the formation of coexisting condensates when the condensate densities of the complex Bose fields and the unit vector field satisfy a certain constraint. In addition, within the $1/N$ expansion of the free energy on $S^d$, we also find that the absolute value of free energy decreases as the dimension $d$ increases.
Keywords: functional integral, phase stability condition, $O(N)$ condensation model.
Mots-clés : convergence condition
@article{TMF_2022_210_1_a7,
     author = {Jun Yan},
     title = {Functional integrals and phase stability properties in the~$O(N)$ vector field condensation model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {128--139},
     year = {2022},
     volume = {210},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/}
}
TY  - JOUR
AU  - Jun Yan
TI  - Functional integrals and phase stability properties in the $O(N)$ vector field condensation model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 128
EP  - 139
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/
LA  - ru
ID  - TMF_2022_210_1_a7
ER  - 
%0 Journal Article
%A Jun Yan
%T Functional integrals and phase stability properties in the $O(N)$ vector field condensation model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 128-139
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/
%G ru
%F TMF_2022_210_1_a7
Jun Yan. Functional integrals and phase stability properties in the $O(N)$ vector field condensation model. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 128-139. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a7/

[1] J. I. Kapusta, “Bose–Einstein condensation, spontaneous symmetry breaking, and gauge theories”, Phys. Rev. D, 24:2 (1981), 426–439 | DOI

[2] J. I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications, Cambridge Univ. Press, Cambridge, 2006 | DOI | MR

[3] S. Bornholdt, N. Tetradis, C. Wetterich, “Coleman–Weinberg phase transition in two-scalar models”, Phys. Lett. B, 348:1–2 (1994), 89–99, arXiv: hep-th/9408132

[4] S. Bornholdt, N. Tetradis, C. Wetterich, “High temperature phase transition in two-scalar theories”, Phys. Rev. D, 53:8 (1995), 4552–4569, arXiv: hep-ph/9503282 | DOI

[5] E. Babaev, L. D. Faddeev, A. J. Niemi, “Hidden symmetry and knot solitons in a charged two-condensate Bose system”, Phys. Rev. B, 65:10 (2001), 100512, 4 pp. | DOI

[6] E. Babaev, “Phase diagram of planar $U(1)\times U(1)$ superconductors: condensation of vortices with fractional flux and a superfluid state”, Nucl. Phys. B, 686:3 (2003), 397–412, arXiv: cond-mat/0201547 | DOI | MR

[7] I. R. Klebanov, A. M. Polyakov, “AdS dual of the critical $O(N)$ vector model”, Phys. Lett. B, 550:3–4 (2002), 213–219 | DOI | MR

[8] S. A. Hartnoll, S. P. Kumar, “The $O(N)$ model on a squashed $S^3$ and the Klebanov–Polyakov correspondence”, JHEP, 06 (2005), 012, 25 pp., arXiv: hep-th/0503238 | DOI | MR

[9] I. R. Klebanov, S. S. Pufu, B. R. Safdi, “$F$-theorem without supersymmetry”, JHEP, 10 (2011), 38, 26 pp., arXiv: 1105.4598 | DOI | MR

[10] S. Giombi, I. R. Klebanov, “Interpolating between $a$ and $F$ ”, JHEP, 03 (2015), 117, 34 pp. | DOI | MR

[11] J. Fröhlich, A. Mardin, V. Rivasseau, “Borel summability of the $1/N$ expansion for the $N$-vector [$O(N)$ nonlinear $\sigma$] models”, Commun. Math. Phys., 86:1 (1982), 87–110 | DOI | MR

[12] G. 't Hooft, “On the convergence of planar diagram expansions”, Commun. Math. Phys., 86:4 (1982), 449–464 | DOI | MR

[13] Y. Chen, Y. Zhu, “Convergence of the variational cumulant expansion”, Commun. Theor. Phys., 28:2 (1997), 241–244 | DOI

[14] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[15] Y. Guo, R. Seiringer, “On the mass concentration for Bose–Einstein condensate with attractive interaction”, Lett. Math. Phys., 104:2 (2014), 141–156 | DOI | MR

[16] B.-R. Zhou, “Interplay between quark-antiquark and diquark condensates in vacuum in a two-flavor Nambu–Jona–Lasinio model”, Commun. Theor. Phys., 47:1 (2007), 95–101, arXiv: hep-th/0703059 | DOI

[17] L. C. L. Botelho, Methods of Bosonic and Fermionic Path Integrals Representations: Continuum Random Geometry in Quantum Field Theory, Nova Sci., New York, 2009

[18] M. Moshe, J. Zinn-Justin, “Quantum field theory in the large $N$ limit: a review”, Phys. Rep., 385:3–6 (2003), 69–228, arXiv: hep-th/0306133 | DOI | MR

[19] A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge Univ. Press, Cambridge, 2003 | MR

[20] J. Yan, B.-L. Li, “Functional integrals and convergence of partition function in sine-Gordon–Thirring model”, Lett. Math. Phys., 104:2 (2014), 233–242 | DOI | MR

[21] J. Yan, “Functional integrals and phase structures in sine-Gordon–Thirring model”, Modern Phys. Lett. B, 26:27 (2012), 1250178, 7 pp. | DOI | MR

[22] N. E. Bogdanova, V. N. Popov, “Dvumernaya teoriya polya s neskolkimi kondensirovannymi fazami”, TMF, 46:3 (1981), 325–334 | DOI

[23] P. N. Brusov, P. P. Brusov, Collective Excitations in Unconventional Superconductors and Superfluids, World Sci., Singapore, 2010 | DOI

[24] V. S. Yarunin, L. A. Siurakshina, “Branch structure of the Bose-condensate excitations spectrum”, Phys. A, 215:3 (1995), 261–269 | DOI

[25] M. Dilaver, P. Rossi, Y. Gündüç, “Scaling contributions to the free energy in the $1/N$ expansion of $O(N)$ nonlinear sigma models in $d$-dimensions”, Phys. Lett. B, 420:3–4 (1998), 314–318 | DOI

[26] J. O. Andersen, D. Boer, H. J. Warringa, “Thermodynamics of the $O(N)$ nonlinear sigma model in $1+1$ dimensions”, Phys. Rev. D, 69:7 (2004), 076006, 8 pp., arXiv: hep-ph/0309091 | DOI

[27] A. O. Sorokin, “Perekhod slabogo pervogo roda i psevdoskeilingovoe povedenie v klasse universalnosti Izing-$O(N)$ modeli”, TMF, 200:2 (2019), 310–323 | DOI | DOI | MR

[28] J. Yan, “Functional integrals and $1/h$ expansion in the boson-fermion model”, Phys. A, 452 (2016), 145–150 | DOI | MR

[29] D. Baranov, V. Yarunin, “${}^4$He spectrum shift caused by ${}^3$He admixture”, Phys. A, 269:2–4 (1999), 222–234 | DOI

[30] B.-X. Zou, J. Yan, J.-G. Li, W.-J. Su, “Functional integrals and energy density fluctuations on black hole background”, Gen. Rel. Grav., 43:1 (2011), 305–314 | DOI | MR

[31] J. Yan, “Functional integrals and correlation functions in the sine-Gordon–Thirring model with gravity correction”, Gravit. Cosmol., 23:1 (2017), 45–49 | DOI | MR